998 resultados para IRON 57


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dating of a hornblende concentrate by the 40Ar/39Ar method gives an age of 23.4±5.5 m.y. for a dacite boulder from conglomerate in Deep Sea Drilling Project Hole 439. The conglomerate clasts range up to 1 meter in diameter and are nearly monolithologic, suggesting that a nearby former volcano erupted the dacite. The dacite is only 90 km landward from the Japan Trench, whereas modern trench-related volcanoes lie at least 120 km from their trenches. The dacite locality is on strike with and is probably an extension of a magmatic arc on the island of Hokkaido that crosses the Kuril arc at an angle of 65° and which was active 16 to 36 m.y. ago. The part of the former arc landward from the Kuril arc argues against an origin from a leaking subduction zone or from subduction of an active spreading ridge. The part seaward both from the Kuril and Japan arcs weakens an explanation based on migration of a trench-trenchtrench triple junction. The magmatic rocks probably formed along a middle-Tertiary plate boundary that had stepped seaward from a more-landward Cretaceous position. Later, the boundary stepped farther seaward at the Kuril arc and landward again at the Japan arc. If so, the present Japan subduction zone must have consumed most of the strata that had accumulated between it and the earlier trench.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidic to intermediate volcanic rocks were obtained as boulders, pebbles, and clasts with intercalated matrix sediments near the Japan Trench. A 47.5-meter conglomerate bed unconformably overlies acoustic basement consisting of Upper Cretaceous siltstone and is overlain in turn by massive coarse-sandstone and siltstone beds with many fossil mollusks. The volcanic cobbles and boulders in the conglomerate show pronounced porphyritic texture. Their phenocrysts are plagioclase, hornblende, and biotite; the groundmass consists of plagioclase, K-feldspar, quartz, iron oxide, and altered interstitial glass. The Plagioclase content of these volcanic rocks is very high, whereas iron oxide minerals are rare. The chemical composition of these volcanic rocks was analyzed to determine the rock series. Matrix sediments were also analyzed chemically, and their chemical composition was found to be similar to that of volcanic rocks, except for a lower CaO content. SiO2 content of the volcanic rocks ranges from 60.23 to 73.90, corresponding to that of andesite to rhyolite. All the samples show extremely high Al2O3 content, which reflects the high amounts of modal plagioclase. These volcanic rocks belong to both the calc-alkalic and tholeiitic rock series, and the differentiation trend is controlled by fractional crystallization, mainly of plagioclase, K-feldspar, and hornblende. The assemblage of calc-alkalic and tholeiitic rock series is frequently observed in island arcs and active continental margins. These volcanic rocks are derived from the Oyashio ancient landmass, which is a slightly matured island arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from Sites 582 (11 samples), 583 (19 samples), 584 (31 samples), 294 (1 sample), 296 (9 samples), 297 (3 samples), 436 (11 samples), and 439 (3 samples) were analyzed by X-ray fluorescence and/or instrumental neutron activation analysis. Ten major elements and 24 minor and trace elements (including 7 rare earth elements) were determined with these methods. Geochemistry varies systematically with both the site location and sediment age. Such variations are explained in terms of changes in sedimentation processes caused by plate motion and changes in ocean currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 200 volcanic ash layers were recovered during DSDP Leg 57. The volcanic glass in some of these layers was investigated petrographically and chemically in this study. Volcanic glass is mainly rhyolitic and/or rhyodacitic in chemical composition, and its refractive index ranges from 1.496 to 1.529. Some volcanic ash layers consist of multiple grains of different chemical compositions. All the volcanic glass belongs to the tholeiitic and the calc-alkalic volcanic rock series, in SiO2-(Na2O + K2O) diagram and FeO*/MgO-SiO2 diagram. We correlated successfully three volcanic ash layers from the standpoint of chemical composition and biostratigraphy. Hydration of volcanic glass from Leg 57 is less intense than in other DSDP cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We detected authigenic clinoptilolites in two core samples of tuffaceous, siliceous mudstone in the lower Miocene section of Hole 439. They occur as prismatic and tabular crystals as long as 0.03 mm in various voids of dissolved glass shards, radiolarian shells, calcareous foraminifers, and calcareous algae. They are high in alkalies, especially Na, and in silica varieties. There is a slight difference in composition among them. The Si : (Al+ Fe3+) ratio is highest (4.65) in radiolarian voids, intermediate (4.34) in dissolved glass voids, and lowest (4.26) in voids of calcareous organisms. This difference corresponds to the association of authigenic silica minerals revealed by the scanning electron microscope: There are abundant opal-CT lepispheres in radiolarian voids, low cristobalite and some lepispheres in dissolved glass voids, and a lack of silica minerals in the voids of calcareous organisms. Although it contains some silica from biogenic opal and alkalies from trapped sea water, clinoptilolite derives principally from dissolved glass. Although they are scattered in core samples of Quaternary through lower Miocene diatomaceous and siliceous deposits, acidic glass fragments react with interstitial water to form clinoptilolite only at a sub-bottom depth of 935 meters at approximately 25°C. Analcimes occur in sand-sized clasts of altered acidic vitric tuff in the uppermost Oligocene sandstones. The analcimic tuff clasts were probably reworked from the Upper Cretaceous terrain adjacent to Site 439. Low cristobalite and opal-CT are found in tuffaceous, siliceous mudstone of the middle and lower Miocene sections at Sites 438 and 439. Low cristobalite derives from acidic volcanic glass and opal-CT from biogenic silica. Both siliceous organic remains and acidic glass fragments occur in sediments from the Quaternary through lower Miocene sections. However, the shallowest occurrence is at 700 meters subbottom in Hole 438A, where temperature is estimated to be 21°C. The d(101) spacing of opal-CT varies from 4.09 to 4.11 Å and that of low cristobalite from 4.04 to 4.06 Å. Some opal-CT lepispheres are precipitated onto clinoptilolites in the voids of radiolarian shells at a sub-bottom depth of 950 meters in Hole 439. Sandstone interlaminated with Upper Cretaceous shale is chlorite- calcite cemented and feldspathic. Sandstones in the uppermost Oligocene section are lithic graywacke and consist of large amounts of lithic clasts grouped into older sedimentary and weakly metamorphosed rocks, younger sedimentary rocks, and acidic volcanic rocks. The acidic volcanic clasts probably originated from the volcanic high, which supplied the basal conglomerate with dacite gravels. The older sedimentary and weakly metamorphosed rocks and green rock correspond to the lithologies of the lower Mesozoic to upper Paleozoic Sorachi Group, including the chert, limestone, and slate in south-central Hokkaido. However, the angular shape and coarseness of the clasts and the abundance of carbonate rock fragments indicate a nearby provenance, which is probably the southern offshore extension of the Sorachi Group. The younger sedimentary rocks, including mudstone, carbonaceous shale, and analcime-bearing tuff, correspond to the lithologies of the Upper Cretaceous strata in south-central Hokkaido. Their clasts were reworked from the southern offshore extension of the strata. Because of the discontinuity of the zeolite zoning due to burial diagenesis, an overburden several kilometers thick must have been denuded before the deposition of sediments in the early Oligocene.