994 resultados para IRON 55


Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to Wilson's (1963a, b) hypothesis, the volcanoes of the Hawaiian-Emperor Chain are formed as the Pacific lithospheric plate moves over a source of magma in the mantle. Morgan (1971, 1972) proposed that these "hot spots" resulted from "mantle plumes" that rise vertically from the core/mantle boundary and that are fixed about the deep mantle and rotating globe poles. The age of volcanoes increases with distance away from the recent "hot spot" beneath Kilauea volcano. The Hawaiian-Emperor bend indicates that the direction of motion of the Pacific plate changed about 40 m.y. ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tops of the Emperor chain guyots, which were drilled during Leg 55, lie above the carbonate compensation depth (CCD), as well as above the foraminiferal dissolution level, i.e., lysocline. They are therefore the sites of accumulation of pelagic foraminiferal nannofossil ooze, such accumulation having taken place here since the moment of the seamounts' subsidence and the termination of shallow-water carbonate accumulation which was formerly developed on their tops. But the existence of strong bottom currents over the tops and slope scarps limits, and at some places reduces to zero, sedimentation of any pelagic particles. At such areas there are formed thick iron-manganese crusts. The seamounts drilled on Leg 55 are within the northern (Boreal) belt of biogenic silica accumulation, which existed in the northern Pacific throughout the Neogene. This circumstance presupposes a possible enrichment of the relatively fine-grained sediments with biogenic silica - diatoms and radiolarians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microprobe mineral compositions of olivine, plagioclase, clinopyroxene, chrome spinel, ilmenite, and titanomagnetite are presented for 7 samples from 4 flows of hawaiite and one flow of tholeiitic basalt from Hole 430A at Ojin Seamount, 4 samples from 3 flows of alkalic basalt from Hole 432A at Nintoku Seamount, and 29 samples from 2 flows of alkalic basalt and 24 flows of tholeiitic basalt from Holes 433A, 433B, and 433C at Suiko Seamount. The four hawaiite flows from Hole 430A on Ojin Seamount have nearly identical mineralogy. The plagioclase phenocrysts and calculated equilibrium olivine appear to have crystallized at about 1175°C; the groundmass plagioclase crystallized from about 1135° to 1010°C; and the Fe-Ti oxides equilibrated at temperatures from 1000°C to 720°C under oxygen fugacities of 10**-11 to 10**-17. The single tholeiitic flow contains glomerocrysts of plagioclase (An80 to An65) and clinopyroxene (Wo43En46Fsn to Wo42En45Fs13). The plagioclase phenocrysts give calculated temperatures as high as 1400°C, indicating that they were not equilibrated with a magma having the bulk rock composition. The plagioclase groundmass crystallized at 1120° to 1070°C, and the Fe-Ti oxides equilibrated at 1070° to 930°C under oxygen fugacities of 10**-10 to 10**-12. Using mineral compositions of Hawaiian basalts as a guide, we infer that the hawaiite flows were erupted during the post-caldera alkalic eruptive stage and the tholeiite was erupted during the shield-building or caldera collapse stage. The three alkalic basalt flows from Hole 432A on Nintoku Seamount have similar mineralogy, although Flow Units 1 and 2 contain much more abundant plagioclase phenocrysts. The groundmass plagioclase crystallized at temperatures between 1175° and 1000°C. The olivine and plagioclase phenocrysts do not appear to be in equilibrium with the enclosing magmas. The mineral compositions suggest that these samples are intermediate between alkalic basalt and hawaiite; they probably erupted during the post-caldera alkalic stage of eruption. The two analyzed alkalic basalt flows are the two youngest flows recovered at Holes 433A, 433B, and 433C. Flow Unit 1 contains abundant sector-zoned clinopyroxene, and Flow Unit 2 contains rare kink-banded olivine xenocrysts. The plagioclase phenocrysts yield calculated temperatures of 1440° to 1250°C, indicating that they are probably not cognate. Calculated-equilibrium olivine indicates crystallization of olivine at about 1170°C. The Fe-Ti oxides equilibrated at temperatures of 1140° to 870°C under oxygen fugacities of 10**-9 to 10**-14. The groundmass plagioclase crystallized at temperatures of 1178° to 1035 °C. The mineral compositions indicate that these alkalic basalts erupted during the post-caldera alkalic eruptive stage. The 24 analyzed tholeiitic basalts are subdivided on the basis of phenocryst abundances into olivine tholeiites, plagioclase tholeiites, and tholeiites. The crystallization sequence appears to have been chrome spinel, olivine, plagioclase, and clinopyroxene as phenocryst phases, followed by and overlapping with groundmass crystallization of plagioclase (1180° to 920°C), clinopyroxene, and Fe-Ti oxides (1140° to 670°C). At least three flows contain pigeonite. The mineral compositions indicate that all the samples from Flow Unit 4 downward are tholeiitic basalts, although Flow Unit 64 has mineral compositions transitional to those in alkalic basalts.