996 resultados para IPC, passive, port-hamiltonian, hamiltonian, RCC, KUKA, ROS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La teleoperación o telerobótica es un campo de la robótica que se basa en el control remoto de robots esclavo por parte de un usuario encargado de gobernar, mediante un dispositivo maestro, la fuerza y movimiento del robot. Sobre dicho usuario recaen también las tareas de percepción del entorno, planificación y manipulación compleja. Concretamente se pretende desarrollar el control software necesario para teleoperar un manipulador esclavo, Kuka Lightweigh mediante un dispositivo háptico Phamton Omni, que se comporta como maestro, sin que afecten las diferencias dinámicas y estructurales existentes entre ambos dispositivos, aportando información adicional al operador para facilitar la operación. La principal motivación de la evolución de esta tecnología se debe a la necesidad de realizar trabajos en entornos hostiles, de difícil acceso, o perjudiciales para la salud del usuario.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a scheme for the determination of the coupling parameters in a chain of interacting spins. This requires only time-resolved measurements over a single particle, simple data postprocessing and no state initialization or prior knowledge of the state of the chain. The protocol fits well into the context of quantum-dynamics characterization and is efficient even when the spin chain is affected by general dissipative and dephasing channels. We illustrate the performance of the scheme by analyzing explicit examples and discuss possible extensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The applicability of the Watson Hamiltonian for the description of nonlinear molecules—especially triatomic ones—has always been questioned, as the Jacobian of the transformation that leads to the Watson Hamiltonian, vanishes at the linear configuration. This results in singular behavior of the Watson Hamiltonian, giving rise to serious numerical problems in the computation of vibrational spectra, with unphysical, spurious vibrational states appearing among the physical vibrations, especially in the region of highly excited states. In this work, we analyze the problem and propose a simple way to confine the nuclear wavefunction in such a way that the spurious solutions are eliminated. We study the water molecule and observe an improvement compared with previous results. We also apply the method to the van der Walls molecule XeHe2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102 ( 2009) 187203]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law. © 2011 American Physical Society.