968 resultados para INSERTIONAL MUTAGENESIS
Resumo:
We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves.
Resumo:
An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.
Resumo:
An important technology in model organisms is the ability to make transgenic animals. In the past, transgenic technology in zebrafish has been limited by the relatively low efficiency with which transgenes could be generated using either DNA microinjection or retroviral infection. Previous efforts to generate transgenic zebrafish with retroviral vectors used a pseudotyped virus with a genome based on the Moloney murine leukemia virus and the envelope protein of the vesicular stomatitis virus. This virus was injected into blastula-stage zebrafish, and 16% of the injected embryos transmitted proviral insertions to their offspring, with most founders transmitting a single insertion to approximately 2% of their progeny. In an effort to improve this transgenic frequency, we have generated pseudotyped viral stocks of two new Moloney-based genomes. These viral stocks have titers up to two orders of magnitude higher than that used previously. Injection of these viruses resulted in a dramatic increase in transgenic efficiency; over three different experiments, 83% (110/133) of the injected embryos transmitted proviral insertions to 24% of their offspring. Furthermore, founders made with one of the viruses transmitted an average of 11 different insertions through their germ line. These results represent a 50- to 100-fold improvement in the efficiency of generating transgenic zebrafish, making it now feasible for a single lab to rapidly generate tens to hundreds of thousands of transgenes. Consequently, large-scale insertional mutagenesis strategies, previously limited to invertebrates, may now be possible in a vertebrate.
Resumo:
Five retrotransposon families of rice (Tos1-Tos5) have been reported previously. Here we report 15 new retrotransposon families of rice (Tos6-Tos20). In contrast to yeast and Drosophila retrotransposons, all of the rice retrotransposons examined appear inactive (or almost inactive) under normal growth conditions. Three of the rice retrotransposons (Tos10, Tos17, and Tos19) are activated under tissue culture conditions. The most active one, Tos17, was studied in detail. The copy number of Tos17 increased with prolonged culture period. In all of the plants regenerated from tissue cultures, including transgenic plants, 5 to 30 transposed Tos17 copies were detected. The transcript of Tos17 was only detected under tissue culture conditions, indicating that the transposition of Tos17 is mainly regulated at the transcriptional level. To examine the target-site specificity of Tos17 transposition, sequences flanking transposed Tos17 copies were analyzed. At least four out of eight target sites examined are coding regions. Other target sites may also be in genes because two out of four were transcribed. The regenerated plants with Tos17-insertions in the phytochrome A gene and the S-receptor kinase-related gene were identified. These results indicate that activation of Tos17 is an important cause of tissue culture-induced mutations. Tissue culture-induced activation of Tos17 may be a useful tool for insertional mutagenesis and functional analysis of genes.
Resumo:
This report describes an efficient strategy for determining the functions of sequenced genes in microorganisms. A large population of cells is subjected to insertional mutagenesis. The mutagenized population is then divided into representative samples, each of which is subjected to a different selection. DNA is prepared from each sample population after the selection. The polymerase chain reaction is then used to determine retrospectively whether insertions into a particular sequence affected the outcome of any selection. The method is efficient because the insertional mutagenesis and each selection need only to be performed once to enable the functions of thousands of genes to be investigated, rather than once for each gene. We tested this "genetic footprinting" strategy using the model organism Saccharomyces cerevisiae.
Resumo:
Riassunto Il linfoma è una delle neoplasie più diffuse nel gatto. Questa neoplasia è stata classificata in base alla localizzazione anatomica nella forma Mediastinica (che interessa il timo e/o i linfonodi mediastinici), Alimentare, Multicentrica (che interessa diversi linfonodi e/o la milza e/o il fegato, Extranodale (che coinvolge i reni, SNC o la cute). Le cellule neoplastiche sono caratterizzate da diverse sottopopolazioni, che sono definite tramite immunofenotipizzazione ottenuta mediante tecniche immunoistochimiche (IHC), così che possano essere classificate come cellule B o T o non B/non T. I gatti infetti dal virus della leucemia felina (FeLV, Gammaretrovirus) presentano elevata incidenza di linfomi rispetto ai gatti non infetti. I meccanismi proposti di sviluppo neoplastico sono mutagenesi inserzionali o stimolazione persistente delle cellule immunitarie dell’ospite da parte di antigeni virali, i quali possono promuovere la trasformazione in senso maligno dei linfociti. Lo scopo di questo lavoro è stato esaminare i rilievi patologici, l’espressione di FeLV e l’immonofenotipo (B, T, nonB/nonT) nei reni felini affetti da linfoma. Abbiamo effettuato colorazione Ematossilina- Eosina ed Immunoistochimica per FeLV gp70, CD3 e CD79. Nello studio sono stati inclusi i tessuti di 49 gatti presentati all’Unità Operativa di Anatomia Patologica e Patologia Generale del Dipartimento di Scienze Medico Veterinarie dell’Università degli studi di Parma. Il 39% dei casi (19/49) sono caratterizzati dalla presenza di lesioni linfomatose a livello renale. Questa popolazione è costituita dal 52,6% 3 (10/19) maschi e dal 47,4% (9/19) femmine. L’età è compresa tra 8 mesi e 17 anni ed in particolare 26,6% (5/19) sono giovani (0-2 anni), 47,4% (9/19) sono adulti (2-10 anni) e 26,3% (5/19) sono anziani (>10 anni). Per quanto riguarda la classificazione anatomica la forma renale appare primitiva in 5 casi (25%), in 8 casi (42%) appare secondaria a linfomi multicentrici, in 3 casi (15,7%) a linfomi mediastinici e in altri 3 casi (15,7%) a linfomi gastrici e intestinali. Per quanto riguarda l’immunofenotipizzazione sono risultati CD3 positivi il 73,7% (14/19) e CD3 negativi il 27,3% (5/19); CD79 alpha positivi il 26,3% (5/19) e CD79 alpha negativi il 73,7% (14/19); l’espressione della proteina gp70 è stata individuata nel 78,9% (15/19) delle neoplasie renali, mentre il 21,1% (4/19) non presentava espressione della proteina. Nei 4 anni presi in considerazione nello studio si evince un’elevata incidenza della localizzazione anatomica renale sul totale di linfomi osservati. Non si è notata correlazione statistica tra linfomi renali, età e sesso dei soggetti presi in esame ma vi è un’elevata percentuale di animali adulti ed anziani affetti dalla patologia. Nella valutazione fenotipica dell’infiltrato neoplastico si è osservata l’elevata espressione di CD3, caratterizzando i linfociti come appartenenti alla sottopopolazione T. Inoltre si è evidenziato come un elevato numero di cellule neoplastiche esprimano gp70; ciò permette di affermare che i linfociti neoplastici sono infettati dal virus FeLV, il quale inoltre è in attiva replicazione. I marker CD3 e gp70 sono risultati fortemente correlati statisticamente; si può affermare perciò che l’espansione clonale dei linfociti T è correlata alla presenza e replicazione del virus.
Resumo:
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12.
Resumo:
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12.
Resumo:
The bacterial insertion sequence IS21 when repeated in tandem efficiently promotes non-replicative cointegrate formation in Escherichia coli. An IS21-IS21 junction region which had been engineered to contain unique SalI and BglII sites close to the IS21 termini was not affected in the ability to form cointegrates with target plasmids. Based on this finding, a novel procedure of random linker insertion mutagenesis was devised. Suicide plasmids containing the engineered junction region (pME5 and pME6) formed cointegrates with target plasmids in an E.coli host strain expressing the IS21 transposition proteins in trans. Cointegrates were resolved in vitro by restriction with SalI or BglII and ligation; thus, insertions of four or 11 codons, respectively, were created in the target DNA, practically at random. The cloned Pseudomonas aeruginosa arcB gene encoding catabolic ornithine carbamoyltransferase was used as a target. Of 20 different four-codon insertions in arcB, 11 inactivated the enzyme. Among the remaining nine insertion mutants which retained enzyme activity, three enzyme variants had reduced affinity for the substrate ornithine and one had lost recognition of the allosteric activator AMP. The linker insertions obtained illustrate the usefulness of the method in the analysis of structure-function relationships of proteins.
Resumo:
A better understanding of Mycobacterium tuberculosis virulence mechanisms is highly dependent on the design of efficient mutagenesis systems. A system enabling the positive selection of insertional mutants having lost the delivery vector was developed. It uses ts-sacB vectors, which combine the counterselective properties of the sacB gene and a mycobacterial thermosensitive origin of replication and can therefore be efficiently counterselected on sucrose at 39°C. This methodology allowed the construction of M. tuberculosis transposition mutant libraries. Greater than 106 mutants were obtained, far exceeding the number theoretically required to obtain at least one insertion in every nonessential gene. This system is also efficient for gene exchange mutagenesis as demonstrated with the purC gene: 100% of the selected clones were allelic exchange mutants. Therefore, a single, simple methodology has enabled us to develop powerful mutagenesis systems, the lack of which was a major obstacle to the genetic characterization of M. tuberculosis.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
The 3-dimensionaI structure determination of rat phenylalanine hydroxylase (PAH) has identified potentially important amino acids lining the active site cleft with the majority of these having hydrophobic side-chains including several with aromatic side chains. Here we have analyzed the effect on rat PAH enzyme kinetics of in vitro mutagenesis of a number of these amino acids lining the PAH active site. Mutation of F299, Y324, F331, and Y343 caused a significant decrease in enzyme activity but no change in the K-m for substrate or cofactor. me conclude that these aromatic residues are essential for activity but are not significantly involved in binding of the substrate or cofactor. in contrast the PAH mutant, S349T, showed an 18-fold increase in K-m for phenylalanine, showing the first functional evidence that this residue was binding at or near the phenylalanine binding site. This confirms the recently published model for the binding of phenylalanine to the PAH active site that postulated S349 interacts with the amino group on the main chain of the phenylalanine molecule. This result differs with that found for the equivalent mutation (S395T), in the closely related tyrosine hydroxylase, which had no effect on substrate K-m, showing that while the architecture of the two active sites are very similar the amino acids that bind to the respective substrates are different. (C) 2000 Academic Press.