988 resultados para INORGANIC MATERIALS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 In this thesis, the application of planetary ball milling for the efficient production of nanomaterials is systematically studied. Three inorganic materials: calcium carbonate (CaCO3), molybdenum disulphide (MoS2) and hexagonal-boron nitride (h-BN) are chosen as model systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A synthetic route was designed for the incorporation of inorganic materials within water-based miniemulsions with a complex and adjustable polymer composition. This involved co-homogenization of two inverse miniemulsions constituting precursors of the desired inorganic salt dispersed within a polymerizable continuous phase, followed by transfer to a direct miniemulsion via addition to an o/w surfactant solution with subsequent homogenization and radical polymerization. To our knowledge, this is the first work done where a polymerizable continuous phase has been used in an inverse (mini)emulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water-based dispersion. The versatility of the process was demonstrated by the synthesis of different inorganic pigments, but also the use of unconventional mixture of vinylic monomers and epoxy resin as the polymerizable phase (unconventional as a miniemulsion continuous phase but typical combination for coating applications). Zinc phosphate, calcium carbonate and barium sulfate were all successfully incorporated in the polymer-epoxy matrix. The choice of the system was based on a typical functional coatings system, but is not limited to. This system can be extended to incorporate various inorganic and further materials as long as the starting materials are water-soluble or hydrophilic. rnThe hybrid zinc phosphate – polymer water-based miniemulsion prepared by the above route was then applied to steel panels using autodeposition process. This is considered the first autodeposition coatings process to be carried out from a miniemulsion system containing zinc phosphate particles. Those steel panels were then tested for corrosion protection using salt spray tests. Those corrosion tests showed that the hybrid particles can protect substrate from corrosion and even improve corrosion protection, compared to a control sample where corrosion protection was performed at a separate step. Last but not least, it is suggested that corrosion protection mechanism is related to zinc phosphate mobility across the coatings film, which was proven using electron microscopy techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conventional inorganic materials for x-ray radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, me- chanical sti ffness, lack of tissue-equivalence and toxicity. Semiconducting organic polymers represent an alternative and have been employed as di- rect photoconversion material in organic diodes. In contrast to inorganic detector materials, polymers allow low-cost and large area fabrication by sol- vent based methods. In addition their processing is compliant with fexible low-temperature substrates. Flexible and large-area detectors are needed for dosimetry in medical radiotherapy and security applications. The objective of my thesis is to achieve optimized organic polymer diodes for fexible, di- rect x-ray detectors. To this end polymer diodes based on two different semi- conducting polymers, polyvinylcarbazole (PVK) and poly(9,9-dioctyluorene) (PFO) have been fabricated. The diodes show state-of-the-art rectifying be- haviour and hole transport mobilities comparable to reference materials. In order to improve the X-ray stopping power, high-Z nanoparticle Bi2O3 or WO3 where added to realize a polymer-nanoparticle composite with opti- mized properities. X-ray detector characterization resulted in sensitivties of up to 14 uC/Gy/cm2 for PVK when diodes were operated in reverse. Addition of nanoparticles could further improve the performance and a maximum sensitivy of 19 uC/Gy/cm2 was obtained for the PFO diodes. Compared to the pure PFO diode this corresponds to a five-fold increase and thus highlights the potentiality of nanoparticles for polymer detector design. In- terestingly the pure polymer diodes showed an order of magnitude increase in sensitivity when operated in forward regime. The increase was attributed to a different detection mechanism based on the modulation of the diodes conductivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clay mineralogic and inorganic geochemical investigations of Cretaceous and Cenozoic sediments of the western Gulf of Mexico lead to the following main conclusions. (1) Transition of lowermost Cretaceous continental to marine sedimentation is marked by a clay evaporitic stage, north of the Campeche Escarpment. (2) Existence of combined mineralogic and geochemical stratigraphy allows us to propose correlations between Sites 535 and 540, especially for the Albian. (3) Predominance of detrital clay assemblages is indicative of hot and variably humid continental climate until the early late Cenozoic. (4) Tectonic destabilization of the margins of Gulf of Mexico occurred at different periods, especially until the middle Cretaceous, with a mixed erosion of rocks and soils and temporary oxidized conditions of deposition. (5) Successive developments of confined perimarine basins occurred from the earliest Cretaceous until the Miocene, chiefly in the Florida area. The sources of inorganic materials were chiefly situated on the east of the studied area until the late Tertiary and after that in the Mississippi River basin. (6) Occasionally, volcanic activity influenced the clay mineralogy and mainly the geochemistry, and possibly contributed to the rather strong magnesian character of the deposition until the late Paleogene. (7) The argillaceous diagenesis is weak; variability of the carbonate diagenesis is marked by the relation Sr = f(CaO) and chiefly depends on the depth of burial, the clay content, the porosity, and the geologic age.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon solar cells continue to dominate the solar power market, and continued efforts at device fabrication improvements, and device topology advancements are discussed. III-V compound semiconductor materials on c-Si for solar power generation are also reviewed. Developments in thin-film based solar cells are reviewed, with a focus on amorphous silicon, copper zinc tin sulfide, cadmium telluride, as well as nanostructured Cadmium telluride. Recent developments in the use of nano-materials for solar power generation, including silicon and gallium arsenide nanowires, are also reviewed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical proper-ties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy (XPS) can play an important role in guiding the design of new materials, tailored to meet increasingly stringent constraints on performance devices, by providing insight into their surface compositions and the fundamental interactions between the surfaces and the environment. This chapter outlines the principles and application of XPS as a versatile, chemically specific analytical tool in determining the electronic structures and (usually surface) compositions of constituent elements within diverse functional materials. Advances in detector electronics have opened the way for development of photoelectron microscopes and instruments with XPS imaging capabilities. Advances in surface science instrumentation to enable time-resolved spectroscopic measurements offer exciting opportunities to quantitatively investigate the composition, structure and dynamics of working catalyst surfaces. Attempts to study the effects of material processing in realistic environments currently involves the use of high- or ambient-pressure XPS in which samples can be exposed to reactive environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface behaviour of materials is crucial to our everyday lives. Studies of the corrosive, reactive, optical and electronic properties of surfaces are thus of great importance to a wide range of industries including the chemical and electronics sectors. The surface properties of polymers can also be tuned for use in packaging, non stick coatings or for use in medical applications. Methods to characterise surface composition and reactivity are thus critical to the development of next generation materials. This report will outline the basic principles of X-ray photoelectron spectroscopy and how it can be applied to analyse the surfaces of inorganic materials. The role of XPS in understanding the nature of the active site in heterogeneous catalysts will also be discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a growing interest in identifying inorganic material affinity classes for peptide sequences due to the development of bionanotechnology and its wide applications. In particular, a selective model capable of learning cross-material affinity patterns can help us design peptide sequences with desired binding selectivity for one inorganic material over another. However, as a newly emerging topic, there are several distinct challenges of it that limit the performance of many existing peptide sequence classification algorithms. In this paper, we propose a novel framework to identify affinity classes for peptide sequences across inorganic materials. After enlarging our dataset by simulating peptide sequences, we use a context learning based method to obtain the vector representation of each amino acid and each peptide sequence. By analyzing the structure and affinity class of each peptide sequence, we are able to capture the semantics of amino acids and peptide sequences in a vector space. At the last step we train our classifier based on these vector features and the heuristic rules. The construction of our models gives us the potential to overcome the challenges of this task and the empirical results show the effectiveness of our models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marking Strange is a series of collaborative experimental creative works undertaken by Marissa Lindquist and Andrzej Pytel which explores the relationship between the body, new materiality and its application within different facets of design production. The ongoing experimental practice looks toward both organic and inorganic materials as a means of informing scholarly research, material development for commercial, installation and speculative design production and for academic studio programs. The work draws from theoretical positions such as Heidegger’s "nearness and revealing" (1927-1954), Simondon’s "transduction theory" (1989) and Burke's "sublime" (1757). Making Strange work has been exhibited within the Australian Pavilion Catalogue, FORMATIONS: New Practices in Australian Architecture, directed by Gerard Reinmuth and Anthony Burke with TOKO Concept Design, for the Venice International Architecture Biennale, 2012.