998 resultados para INFRARED CALCIUM TRIPLET
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Borate glasses present an absorption coefficient very close to that of human tissue. This fact makes some borates ideal materials to develop medical and environmental dosimeters. Glass compositions with calcium tetraborate (CaB4O7) and calcium metaborate (CaB2O4), such as the xCaB(4)O(7) - (100-x)CaB2O4 System (0 <= x <= 100 wt%) were obtained by the traditional melting/quenching method. A phenomenon widely known as the 'boron anomaly' was observed in our thermal analysis measurements, as indicated by the increase of T, and the appearance of a maximum value in the composition with 40 wt% of CaB2O4. The Dy doped and Li co-doped 80CaB(4)O(7)-20CaB(2)O(4) (Wt%) glass samples were studied by the thermoluminescence technique. The addition of Dy improved the signal sensitivity in about three times with respect to the undoped glass sample. The addition of Li as a co-dopant in this glass caused a shift to a lower temperature of about 20 degrees C in the main glow peak. The structural analysis of the 80CaB(4)O(7)-20CaB(2)O(4) (wt%) undoped and doped samples were studied through infrared absorption. We have noted an increase in the coordination number of the boron atoms from 3 to 4, i.e., the conversion of the BO3 triangular structural units into BO4 tetrahedra. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.
Resumo:
Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.