977 resultados para INFECTED TICKS
Resumo:
The present study was performed in an area endemic for Brazilian spotted fever (BSF) in Juiz de Fora, state of Minas Gerais, Brazil, during the years 2007 and 2008, when fatal cases of BSF (caused by Rickettsia rickettsii) were reported. Adult ticks (Acari: Ixodidae) identified as Rhipicephalus sanguineus (Latreille) and Amblyomma cajennense (Fabricius) were collected from dogs and horses, respectively, and tested by polymerase chain reaction (PCR). Overall, 13.1% of the Rh. sanguineus ticks and none of the A. cajennense were found to be infected with R. rickettsii. Two isolates of R. rickettsii were successfully established in Vero cell culture from two Rh. sanguineus ticks. An indirect immunofluorescence assay (IFA) using R. rickettsii antigens detected blood serological reaction to R. rickettsii in 67.9% (53/78) of dogs and 41.0% (16/39) of horses living in the study area. Larval offspring from two Rh. sanguineus engorged females, naturally infected by R. rickettsii, were reared to adult stage in the laboratory. All active stages (larvae, nymphs, adults) remained 100% infected by R. rickettsii, which was efficiently transmitted to naive rabbits. Overall, the results of the present study indicate a potential risk for transmission of R. rickettsii to humans by Rh. sanguineus, an occurrence yet to be documented in Brazil.
Resumo:
The current study investigated the occurrence of ticks and their rickettsiae in the Serra do Mar State Park, which encompasses one of the largest Atlantic rain forest reserves of Brazil. From July 2008 to June 2009, a total of 2,439 ticks (2,196 free living and 243 collected on hosts) was collected, encompassing the following 13 species: Amblyomma aureolatum (Pallas), Amblyomma brasiliense Aragao, Amblyomma dubitatum Neumann, Amblyomma fuscum Neumann, Amblyomma incisum Neumann, Amblyomma longirostre (Koch), Amblyomma naponense (Packard), Amblyomma nodosum Neumann, Amblyomma ovale Koch, Haemaphysalis juxtakochi Cooley, Ixodes aragaoi Fonseca, Lodes loricatus Neumann, and Rhipicephalus sanguineus (Latreille). Ticks were submitted to polymerase chain reaction assays targeting portions of the rickettsial genes gltA and ompA. Polymerase chain reaction products were DNA sequenced and compared with corresponding sequences available in GenBank. Rickettsia bellii, a rickettsia of unknown pathogenicity, was detected in one A. aureolatum, one A. ovate, and three A. incisum specimens. At least 8.8% (3/34) of the free-living A. ovale ticks, 13.6% (8/59) of the A. ovale ticks collected from dogs, and 1.9% (1/54) of the R. sanguineus (Latreille) ticks were found to be infected by Rickettsia sp strain Atlantic rain forest, a novel strain that has been shown to cause an eschar-associated spotted fever in the state of Sao Paulo. Our results suggest that A. ovale is the vector of Rickettsia sp strain Atlantic rain forest in the state of Sao Paulo.
Resumo:
Phlebotomine sand flies are the only proven biological vectors of Leishmania parasites. However, Rhipicephalus sanguineus ticks have long been suspected to transmit Leishmania infantum in studies carried out in laboratory and natural conditions. In the present study, 5 mu l of L. infantum promastigotes (1 x 10(6) cells per ml) was injected into the hemocel through the coxa 1 of four engorged females (F1, F2, F3 and F4). Control ticks (F5 and F6) were injected with sterile phosphate-buffered saline (PBS) using the same procedure. Then, these females, their eggs, and the originated larvae were tested by real time polymerase chain reaction (real-time PCR) for the presence of L. infantum kinetoplast DNA (kDNA). Females and eggs were tested after the end of the oviposition period (about 5 weeks post-inoculation) whereas larvae were tested about 4 months after the inoculation of females. All artificially infected females were positive for L. infantum kDNA. In addition, two pools of eggs (one from F2 and other from F4) and four pools of larvae (one from each F1 and F4 and two from F2) were positive for L infantum kDNA. These results showed, for the first time, the transovarial passage of L. infantum kDNA in R. sanguineus ticks, thus suggesting that the transovarial transmission of L. infantum protozoa in ticks is worth to be investigated. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
In this study, we detected Leishmania spp. infection in R. sanguineus collected from dogs that were naturally infected with L. (L.) infantum. We examined 35 dogs of both sexes and unknown ages. The infected dogs were serologically positive by the immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA), and Quick Test-DPP (Dual Path Platform), as well as parasitological examination of a positive skin biopsy or sternal bone marrow aspiration. Ten negative dogs were included as controls. The ticks that infested these dogs were collected in pools of 10 adult females per animal. The PCR was performed with specific primers for Leishmania spp., which amplified a 720-bp fragment. Of the 35 analyzed samples, a product was observed in eight samples (8/35; 22.9%). We conclude that the presence of parasite DNA suggests that ticks participate in the zoonotic cycle of canine visceral leishmaniasis, in the city of Teresina, Piauí.
Resumo:
Following an infestation of dogticks in kennels housing dogs used for long-term studies of the pathogenesis of Chagas disease, we examined the effect of ivermectin treatment on the dogs, ticks, trypanosome parasites, and also on triatomine vectors of Chagas disease. Ivermectin treatment was highly effective in eliminating the ticks, but showed no apparent effect on the dogs nor on their trypanosome infection. Triatominae fed on the dogs soon after ivermectin treatment showed high mortality, but this effect quickly declined for bugs fed at successive intervals after treatment. In conclusion, although ivermectin treatment may have a transient effect on peridomestic populations of Triatominae, it is not the treatment of choice for this situation. The study also showed that although the dogticks could become infected with Trypanosoma cruzi, this only occurred when feeding on dogs in the acute phase of infection, and there was no evidence of subsequent parasite development in the ticks.
Resumo:
During 2006-2008, a total of 260 adult ticks were collected from domestic and wild animals in different regions of the state of Santa Catarina (SC), Brazil, including areas where human cases of Brazilian spotted fever have been reported. Collected ticks belonging to nine species (Amblyomma aureolatum, Amblyomma cajennense, Amblyomma dubitatum, Amblyomma longirostre, Amblyomma ovale, Amblyomma tigrinum, Dermacentor nitens, Rhipicephalus microplus and Rhipicephalus sanguineus) were tested by polymerase chain reaction (PCR) for rickettsial infection. Overall, eight (3.1%) ticks were found to be infected with Rickettsia species. After sequencing the PCR products, we determined that the sequences generated from three A. aureolatum, one A. ovale and one R. sanguineus from the municipality of Blumenau, one A. ovale from the municipality of Águas Mornas and one A. ovale from the municipality of Urussanga were identical to the corresponding partial rickettsial ompA gene sequence of Rickettsia parkeri strain Atlantic rainforest. The sequence generated from one A. longirostre from Blumenau was 100% identical to the corresponding partial rickettsial ompA gene sequence of Rickettsia amblyommii strain AL. Because R. parkeri strain Atlantic rainforest was recently shown to have caused two cases of human spotted fever in other states of Brazil, the role of this rickettsial agent as a possible etiological agent of spotted fever in SC is discussed.
Resumo:
Specimens of the hard tick Amblyomma triste were found infected with Rickettsia parkeri in an area of Argentina (General Lavalle, Buenos Aires Province) where cases of human illness attributed to this microorganism have been reported. Molecular detection of R. parkeri was based on polymerase chain reactions that amplify a ca. 400-bp fragment of the 23S-5S intergenic spacer and a ca. 500-bp fragment of the gene encoding a 190-kDa outer membrane protein. Three (6.97%) of 43 A. triste ticks were determined to be positive for R. parkeri. These results provide strong evidence that A. triste is the vector of R. parkeri in the study area. The findings of this work have epidemiological relevance because human parasitism by A. triste ticks has been frequently recorded in some riparian areas of Argentina and Uruguay and new cases of R. parkeri rickettsiosis might arise in the South American localities where humans are exposed to the bites of this tick species.
Resumo:
Endosymbiosis is a mutualistic, parasitic or commensal symbiosis in which one symbiont is living within the body of another organism. Such symbiotic relationship with free-living amoebae and arthropods has been reported with a large biodiversity of microorganisms, encompassing various bacterial clades and to a lesser extent some fungi and viruses. By contrast, current knowledge on symbionts of nematodes is still mainly restricted to Wolbachia and its interaction with filarial worms that lead to increased pathogenicity of the infected nematode. In this review article, we aim to highlight the main characteristics of symbionts in term of their ecology, host cell interactions, parasitism and co-evolution, in order to stimulate future research in a field that remains largely unexplored despite the availability of modern tools.
Resumo:
Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE.
Resumo:
Hepatozoon canis was molecularly identified in Rio de Janeiro State, Brazil. Twelve dogs from urban areas were studied by blood smear examination and the polymerase chain reaction (PCR) assay. From these dogs, only 1 was positive in both blood smears and PCR.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amazonian birds were caught and examined for the presence of ectoparasites in the Allpahuayo Mishana National Reserve near Iquitos, Peru, from 13 to 16 August 2011. A total of 40 birds representing 16 species were examined. Two birds (5%) were infested with 2 larvae of Amblyomma varium Koch, 1844, and one nymph of A. calcaratum Neumann, 1899. The 2 larvae of A. varium were infected with Rickettsia bellii. This is the first report of R. bellii in A. varium and also the first record of this rickettsia in Peru. In addition, an immature A. calcaratum is reported from Peru for the first time. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
The aim of the study was to evaluate rickettsial infection in ticks from wild birds of the Semidecidual and Atlantic Rainforest remnants of three municipalities of the State of Parana, southern Brazil. Overall, 53 larvae and nymphs collected from birds were checked for the presence of Rickettsia DNA by molecular tests. Five tick species were tested: Amblyomma aureolatum (Pallas), Amblyomma calcaratum Neumann, Amblyomma longirostre (Koch), Amblyomma ovale Koch, and Amblyomma parkeri Fonseca and Aragao. A. longirostre ticks were infected with the spotted fever group agents Rickettsia amblyommii strain AL (32.3% infection rate) and Rickettsia parkeri strain NOD (5.9% infection rate). A new rickettsial genotype was detected in the tick A. parkeri (50% infection rate), which had never been reported to be infected by rickettsiae. Through phylogenetic analysis, this new genotype, here designated as strain ApPR, grouped in a cluster composed by different strains of Rickettsia africae, Rickettsia sibirica, and R. parkeri. We consider strain ApPR to be a new genotype of R. parkeri. This study reports for the first time rickettsial infection in ticks from birds in southern Brazil. The role of migrating birds in the dispersal of these rickettsial strains should be considered in ecological studies of spotted fever group agents in Brazil.
Resumo:
Four Amblyomma sabanerae ticks collected from a turtle (Kinosternon sp.) in San Miguel, El Salvador, were found by molecular analysis to be infected by Rickettsia bellii. We provide the first report of Rickettsia bellii in Central America, and the first report of a Rickettsia species in El Salvador.