988 resultados para INDUCED ENHANCEMENT


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enhancing the sensitivity of nuclear magnetic resonance measurements via hyperpolarization techniques like parahydrogen induced polarization (PHIP) is of high interest for spectroscopic investigations. Parahydrogen induced polarization is a chemical method, which makes use of the correlation between nuclear spins in parahydrogen to create hyperpolarized molecules. The key feature of this technique is the pairwise and simultaneous transfer of the two hydrogen atoms of parahydrogen to a double or triple bond resulting in a population of the Zeeman energy levels different from the Boltzmann equation. The obtained hyperpolarization results in antiphase peaks in the NMR spectrum with high intensities. Due to these strong NMR signals, this method finds arnlot of applications in chemistry e.g. the characterization of short-lived reaction intermediates. Also in medicine it opens up the possibility to boost the sensitivity of medical diagnostics via magnetic labeling of active contrast agents. Thus, further examination and optimization of the PHIP technique is of significant importance in order to achieve the highest possible sensitivity gain.rnrnIn this work, different aspects concerning PHIP were studied with respect to its chemical and spectroscopic background. The first part of this work mainly focused on optimizing the PHIP technique by investigating different catalyst systems and developing new setups for the parahydrogenation. Further examinations facilitated the transfer of the generated polarization from the protons to heteronuclei like 13C. The second part of this thesis examined the possibility to transfer these results to different biologically active compounds to enable their later application in medical diagnostics. Onerngroup of interesting substances is represented by metabolites or neurotransmitters in mammalian cells. Other interesting substances are clinically relevant drugs like a barbituric acid derivative or antidepressant drugs like citalopram which were investigated with regard to their applicability for the PHIP technique and the possibility to achievernpolarization transfer to 13C nuclei. The last investigated substrate is a polymerizable monomer whose polymer was used as a blood plasma expander for trauma victims after the first half of the 20th century. In this case, the utility of the monomer for the PHIP technique as a basis for later investigations of a polymerization reaction using hyperpolarized monomers was examined.rnrnHence, this thesis covers the optimization of the PHIP technology, hereby combining different fields of research like chemical and spectroscopical aspects, and transfers the results to applications of real biologally acitve compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effect of Thermal Relaxation on LSP Induced Residual Stresses and Fatigue Life Enhancement of AISI 316L stainless steel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C(61)-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability of the meridional overturning circulation (MOC) in the upper tropical Atlantic basin is investigated using a reduced-gravity model in a simplified domain. Four sets of idealized numerical experiments are performed: (i) switch-on of the MOC until a fixed value when a constant northward flow is applied along the western boundary; (ii) MOC with a variable flow; (iii) MOC in a quasi-steady flow; and (iv) shutdown of the MOC in the Northern Hemisphere. Results from experiments (i) show that eddies are generated at the equatorial region by shear instability and detached northward; eddies are responsible for an enhancement of the mean flow and the variability of the MOC. Results from experiments (ii) show a transitional behavior of the MOC related to the eddy generation in interannual-decadal time scales as the Reynolds number varies due to the variations in the MOC. In experiments (iii), a critical Reynolds number Re(c) around 30 is found, above which eddies are generated. Experiments (iv) demonstrate that even after the collapse of MOC in the Northern Hemisphere, eddies can still be generated and carry energy across the equator into the Northern Hemisphere; these eddies act to attenuate the impact of the MOC shutdown on short time scales. The results described here may be particularly pertinent to ocean general circulation models in which the Reynolds number lies close to the bifurcation point separating the laminar and turbulent regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron beam induced second harmonic generation (SHG) is studied in Er(3+) doped PbO-GeO(2) glasses containing silver nanoparticles with concentrations that are controlled by the heat-treatment of the samples. The SHG is observed at T = 4.2 K using a p-polarized laser beam at 1064 nm. Enhancement of the SHG is observed in the samples that are submitted to electron beam incidence. The highest value of the nonlinear susceptibility, 2.08 pm/V, is achieved for the sample heat-treated during 72 h and submitted to an electron beam current of 15 nA. The samples that were not exposed to the electron beam present a susceptibility of a parts per thousand 0.5 pm/V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancement of interdiffusion in GaAs/AlGaAs quantum wells due to anodic oxides was studied. Photoluminescence, transmission electron microscopy, and quantum well modeling were used to understand the effects of intermixing on the quantum well shape. Residual water in the oxide was found to increase the intermixing, though it was not the prime cause for intermixing. Injection of defects such as group III vacancies or interstitials was considered to be a driving force for the intermixing. Different current densities used in the experimental range to create anodic oxides had little effect on the intermixing. ©1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.