869 resultados para INCREASED EXPRESSION
Resumo:
We investigated the cellular and molecular events associated with the increase in sodium transport across the alveolar epithelium of rats exposed to hyperoxia (85% O2 for 7 days followed by 100% O2 for 4 days). Alveolar type II (ATII) cell RNA was isolated and probed with a cDNA for one of the rat colonic epithelial sodium channel subunits (alpha rENaC). The alpha rENaC mRNA (3.7-kb transcript) increased 3-fold in ATII cell RNA isolated from rats exposed to 85% O2 for 7 days and 6-fold after 4 days of subsequent exposure to 100% O2. In situ hybridization revealed increased expression of alpha rENaC mRNA transcripts in both airway and alveolar epithelial cells of hyperoxic rats. When immunostained with a polyclonal antibody to kidney sodium channel protein, ATII cells from hyperoxic rats exhibited a significant increase in the amount of immunogenic protein present in both the plasma membrane and the cytoplasm. When patched in the whole-cell mode, ATII cells from hyperoxic rats exhibited amiloride and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride (EIPA)-sensitive currents that were 100% higher compared with those obtained from air-breathing rats. Single-channel sodium currents (mean conductance of 25 pS) were seen in ATII cells patched in both the inside-out and cell-attached modes. The number and open probability of these channels increased significantly during exposure to hyperoxia. Exposure to sublethal hyperoxia up-regulated both alpha rENaC mRNA and the functional expression of sodium channels in ATII cells.
Resumo:
The gene product of the recently cloned mouse obese gene (ob) is important in regulating adipose tissue mass. ob RNA is expressed specifically by mouse adipocytes in vivo in each of several different fat cell depots, including brown fat. ob RNA is also expressed in cultured 3T3-442A preadipocyte cells that have been induced to differentiate. Mice with lesions of the hypothalamus, as well as mice mutant at the db locus, express a 20-fold higher level of ob RNA in adipose tissue. These data suggest that both the db gene and the hypothalamus are downstream of the ob gene in the pathway that regulates adipose tissue mass and are consistent with previous experiments suggesting that the db locus encodes the ob receptor. In db/db and lesioned mice, quantitative differences in expression level of ob RNA correlated with adipocyte lipid content. The molecules that regulate expression level of the ob gene in adipocytes probably are important in determining body weight, as are the molecules that mediate the effects of ob at its site of action.
Increased expression of the MBP mRNA binding protein HnRNP A2 during oligodendrocyte differentiation
Resumo:
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor that mediates intracellular trafficking of myelin basic protein (MBP) mRNA to the myelin compartment in oligodendrocytes, is most abundant in the nucleus, but shuttles between the nucleus and cytoplasm. In the cytoplasm, it is associated with granules that transport mRNA from the cell body to the processes of oligodendrocytes. We found that the overall level of hnRNP A2 increased in oligodendrocytes as they differentiated into MBIP-positive cells, and that this augmentation was reflected primarily in the cytoplasmic pool of hnRNP A2 present in the form of granules. The extranuclear distribution of hnRNP A2 was also observed in brain during the period of myelination in vivo. Methylation and phosphorylation have been implicated previously in the nuclear to cytoplasmic distribution of hnRNPs, so we used drugs that block methylation and phosphorylation of hnRNPs to assess their effect on hnRNP A2 distribution and mRNA trafficking. Cultures treated with adenosine dialdehyde (AdOx), an inhibitor of S-adenosyl-L-homocysteine hydrolase, or with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a drug that inhibits casein kinase 2 (CK2), maintained the preferential nuclear distribution of hnRNP A2. Treatment with either drug affected the transport of RNA trafficking granules that remained confined to the cell body. (C) 2004 Wiley-Liss, Inc.
Resumo:
The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Resumo:
Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.
Resumo:
Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK.
Resumo:
The potential role of 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) as an intracellular signal for increased protein catabolism and induction of the expression of key components of the ubiquitin-proteasome proteolytic pathway induced by a tumour cachectic factor, proteolysis-inducing factor has been studied in murine C2C12 myotubes. 15(S)-HETE induced protein degradation in these cells with a maximal effect at concentrations between 78 and 312 nM. The effect was attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). There was an increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome, in the same concentration range as that inducing total protein degradation, and this effect was also attenuated by EPA. 15(S)-hydroxyeicosatetraenoic acid also increased maximal expression of mRNA for proteasome subunits C2 and C5, as well as the ubiquitin-conjugating enzyme, E214k, after 4 h incubation, as determined by quantitative competitive RT-PCR. The concentrations of 15-HETE affecting gene expression were the same as those inducing protein degradation. Western blotting of cellular supernatants of myotubes treated with 15(S)-HETE for 24 h showed increased expression of p42, an ATPase subunit of the regulatory complex at similar concentrations, as well as a decrease in expression of myosin in the same concentration range. 15(S)-hydroxyeicosatetraenoic acid activated binding of nuclear factor-κB (NF-κB) in the myotube nucleus and stimulated degradation of 1-κBα. The effect on the NF-κB/1-κBα system was attenuated by EPA. In addition, the NF-κB inhibitor peptide SN50 attenuated the increased chymotrypsin-like enzyme activity in the presence of 15(S)-HETE. These results suggest that 15(S)-HETE induces degradation of myofibrillar proteins in differentiated myotubes through an induction of an increased expression of the regulatory components of the ubiquitin-proteasome proteolytic pathway possibly through the intervention of the nuclear transcription factor NF-κB, and that this process is inhibited by EPA. © 2003 Cancer Research UK.
Resumo:
Introduction: Diabetic nephropathy (DN) is the leading cause of chronic kidney failure, however the mechanisms underlying the characteristic expansion of the extracellular matrix (ECM) in diabetic kidneys remain controversial and unclear. In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in this process by the formation of increased ε-(γ-glutamyl)lysine bonds between ECM components in both experimental and human disease. Studies in db/db diabetic mice and in streptozotocin-treated rats have suggested a similar mechanism, although the relevance of this to human disease has not been addressed. Methods: We have undertaken a retrospective analysis of renal biopsies from 16 DN patients with type 2 diabetes mellitus using an immunohistochemical and immunofl uorescence approach, with tTg and ε-(γ-glutamyl)lysine crosslink quantified by confocal microscopy. Results: Immunofl uorescent analysis of human biopsies (confocal microscopy) showed increases in levels of tTg (+1,266%, p <0.001) and ε-(γ-glutamyl)lysine (+486%, p <0.001) in kidneys with DN compared to normal. Changes were predominantly in the extracellular periglomerular and peritubular areas. tTg staining correlated with e-(?-glutamyl)lysine (r = 0.615, p <0.01) and renal scarring (Masson's trichrome, r = 0.728, p <0.001). Significant changes in e-(?-glutamyl)lysine were also noted intracellularly in some (=5%) tubular epithelial cells. This is consistent with cells undergoing a novel transglutaminase-mediated cell death process in response to Ca influx and subsequent activation of intracellular tTg. Conclusion: Changes in tTg and ε-(γ- glutamyl)lysine occur in human DN. Cellular export of tTg may therefore be a factor in the perpetuation of DN by crosslinking and stabilisation of the ECM, while intracellular activation may lead to cell death contributing towards tubular atrophy. Copyright © 2004 S. Karger AG, Basel.
Resumo:
Atrophy of skeletal muscle is common in patients with cancer and results in increased morbidity and mortality. In order to design effective therapy the mechanism by which this occurs needs to be elucidated. Most studies suggest that the ubiquitin-proteasome proteolytic pathway is most important in intracellular proteolysis, although there have been no reports on the activity of this pathway in patients with different extents of weight loss. In this report the expression of the ubiquitin-proteasome pathway in rectus abdominis muscle has been determined in cancer patients with weight loss of 0-34% using a competitive reverse transcriptase polymerase chain reaction to measure expression of mRNA for proteasome subunits C2 and C5, while protein expression has been determined by western blotting. Overall, both C2 and C5 gene expression was increased by about three-fold in skeletal muscle of cachectic cancer patients (average weight loss 14.5 ± 2.5%), compared with that in patients without weight loss, with or without cancer. The level of gene expression was dependent on the amount of weight loss, increasing maximally for both proteasome subunits in patients with weight loss of 12-19%. Further increases in weight loss reduced expression of mRNA for both proteasome subunits, although it was still elevated in comparison with patients with no weight loss. There was no evidence for an increase in expression at weight losses less than 10%. There was a good correlation between expression of proteasome 20Sα subunits, detected by western blotting, and C2 and C5 mRNA, showing that increased gene expression resulted in increased protein synthesis. Expression of the ubiquitin conjugating enzyme, E214k, with weight loss followed a similar pattern to that of proteasome subunits. These results suggest variations in the expression of key components of the ubiquitin-proteasome pathway with weight loss of cancer patients, and suggest that another mechanism of protein degradation must be operative for patients with weight loss less than 10%. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
In skin, vitamin E acts as the predominant lipophilic antioxidant with a protective function against irradiation and oxidative stress. In addition to that, vitamin E can also modulate signal transduction and gene expression. To study whether the four natural tocopherol analogues (α-, β-, γ-, δ-tocopherol) can influence transcriptional activity by modulating the activity of nuclear receptors, a human keratinocytes cell line (NCTC 2544) was transfected with plasmids containing the luciferase reporter gene under control by direct repeat elements (DR1–DR4), representing binding sites for four different classes of nuclear receptors. In this model, the tocopherols positively modulated only the reporter construct containing a consensus element for peroxisome proliferator-activated receptors (PPARs). The induction was strongest with γ-tocopherol and was most likely the direct consequence of stimulation of PPARγ protein expression in keratinocytes. Vitamin E treatment also led to increased expression of a known PPARγ target gene involved in terminal keratinocytes differentiation, the transglutaminase-1.
Resumo:
A genomic region neighboring the alpha-synuclein gene, on rat chromosome 4, has been associated with anxiety- and alcohol-related behaviors in different rat strains. In this study, we have investigated potential molecular and physiological links between alpha-synuclein and the behavioral differences observed between Lewis (LEW) and Spontaneously Hypertensive (SHR) inbred rats, a genetic model of anxiety. As expected, LEW rats appeared more fearful than SHR rats in three anxiety models: open field, elevated plus maze and light/dark box. Moreover, LEW rats displayed a higher preference for alcohol and consumed higher quantities of alcohol than SHR rats. alpha-Synuclein mRNA and protein concentrations were higher in the hippocampus, but not the hypothalamus of LEW rats. This result inversely correlated with differences in dopamine turnover in the hippocampus of LEW and SHR rats, supporting the hypothesis that alpha-synuclein is important in the downregulation of dopamine neurotransmission. A novel single nucleotide polymorphism was identified in the 30-untranslated region (3`-UTR) of the alpha-synuclein cDNA between these two rat strains. Plasmid constructs based on the LEW 3`-UTR sequence displayed increased expression of a reporter gene in transiently transfected PC12 cells, in accordance with in-vivo findings, suggesting that this nucleotide exchange might participate in the differential expression of alpha-synuclein between LEW and SHR rats. These results are consistent with a novel role for alpha-synuclein in modulating rat anxiety- like behaviors, possibly through dopaminergic mechanisms. Since the behavioral and genetic differences between these two strains are the product of independent evolutionary histories, the possibility that polymorphisms in the alpha-synuclein gene may be associated with vulnerability to anxiety- related disorders in humans requires further investigation. Molecular Psychiatry (2009) 14, 894-905; doi: 10.1038/mp.2008.43; published online 22 April 2008
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.
Resumo:
Background: Increased levels of tumor necrosis factor (TNF)-alpha and oxidative stress have been implicated as factors contributing to hepatic injury in fatty liver diseases. As steatosis is associated with an accelerated progression of fibrosis in chronic hepatitis C (HCV), we hypothesized that the messenger (m)RNA expression of genes involved with the production of reactive oxygen species, inflammation and cellular injury would be increased in liver tissue from subjects with steatosis and chronic HCV. Methods: Real-time polymerase chain reaction was performed to determine relative mRNA expression levels of collagen I, TNF-alpha, cytochrome P450 2E1 (CYP 2E1), transforming growth factor-beta1 and CD14 in liver biopsies from 38 patients with chronic HCV. The mRNA expression levels were compared between subjects with and without steatosis, fibrosis, and inflammation. Results: Multivariate analysis demonstrated that collagen I mRNA expression was increased by 199% in steatosis (P = 0.02), 85% in moderate to severe fibrosis (P = 0.02) and 157% in inflammation (P = 0.03). Livers of patients with steatosis also had an increase in TNF-alpha mRNA expression by 50% (P = 0.03) and CYP 2E1 expression by 37% (P = 0.04) compared with non-steatotic livers. Tumor necrosis factor-alpha protein was localized to Kupffer cells, bile ducts and portal inflammatory cells by immunohistochemistry. Conclusion: Increased expression of TNF-alpha may be involved in the pathogenesis of liver injury and progression of fibrosis in individuals who have steatosis in association with chronic HCV. (C) 2003 Blackwell Publishing Asia Pty Ltd.
Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis
Resumo:
Hepatic hemosiderosis and increased iron absorption are common findings in cirrhosis. It has been proposed that a positive relation exists between intestinal iron absorption and the development of hepatic hemosiderosis. The current study investigated the duodenal expression of the iron transport molecules divalent metal transporter 1 (DMT1 [IRE]), iron-regulated gene 1 (Ireg1 [ferroportin]), hephaestin, and duodenal cytochrome b (Dyctb) in 46 patients with cirrhosis and 20 control subjects. Total RNA samples were extracted from duodenal biopsy samples and the expression of the iron transport genes was assessed by ribonuclease protection assays. Expression of DMT1 and Ireg1 was increased 1.5 to 3-fold in subjects with cirrhosis compared with iron-replete control subjects. The presence of cirrhosis per se and serum ferritin (SF) concentration were independent factors that influenced the expression of DMT1. However, only SF concentration was independently associated with Iregl expression. In cirrhosis, the expression of DMT1 and Iregl was not related to the severity of liver disease or cirrhosis type. There was no correlation between the duodenal expression of DMT1 and Iregl and the degree of hepatic siderosis. In conclusion, the presence of cirrhosis is an independent factor associated with increased expression of DMT1 but not Iregl. The mechanism by which cirrhosis mediates this change in DMT1 expression has yet to be determined. Increased expression of DMT1 may play an important role in the pathogenesis of cirrhosis-associated hepatic iron overload.