999 resultados para ICP-AES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文结合溶剂萃取研究了非水介质中氢化物发生-ICP-AES的分析条件、干扰等因素的影响。利用KI~+H_2SO_4/MIBK萃取体系将As,Sb,Bi萃取到MIBK中而与基体元素分离,然后将该有机相与甲酸按等体积混合后,即可直接进行氢化物发生-ICP-AES分析。还对影响萃取和氢化物发生的一些因素及共存元素的干扰进行了讨论。该方法应用于Ni-Fe基合金中As和Sb的分析,取得了较满意的结果。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main variables found on procedure of the dissolution silicate rocks using acid dissolution in teflon open vessel for analysis of micro elements by ICP-AES has been determined. The results obtained for some samples showed strong dependence of the rock mineralogical composition, then it was recommended an alkaline fusion step after acid dissolution. The decomposition procedure use 20 mi of an acid mixture of HF:HNO3 in the proportion 3:1 for a fraction of 250 mg pulverized sample. The recommended temperatures were 60 degrees C for attack and 90 degrees C for acid volatilization. The fusion step with 50 mg LiBO2 at 1000 degrees C may be used if non-attacked residue is observed in the solution. The whole time was 6 h per sample. Nine types os silicate rocks that show mineralogical and chemical different compositions were chosen for obtaining the optimization of the variables. The elements used were Ce, Y, Yb and Zr. In addition, ultrassonic nebulization has been used. The percentual standard deviations obtained for five determinations were 0.7 and 1.4 for triplicate samples. The mineralogical and textural information from the petrographical analysis of the samples indicated the need of increasing the fusion step on the optimized procedure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ICP-AES法分析样品时,多数样品为溶液。处理难溶样品费时多,易沾污,有时需加入大量试剂;使空白或背景增大影响分析灵敏度。本文研究将固体粉末悬沲体直接引入等离子体的进样方法,试图建立一种快速,简便并能满足一定精度和灵敏度要求的分析方法。本文使用美国Baird PS-1型光电直读ICP发射光谱仪器,自制改进型的GMK雾化器,研究了影响粉末悬沲体样品谱线强度、背景强度和线背比的因素;谱线干扰及其校正;用一套人工合成样品做工作曲线及水系沉积物样品的分析。我们从实验中观察到:1. 粉末粒度是影响进样的重要因素,粒径越小,谱线强度越大。2. 入射功率增大时,所有研究元素的谱线强度和背景强度都增大,但多数元素的线背比下降。3. 载气流量较小时,硬线的强度及线背比较大;反之则软线强度及线背比较大。所有元素的背景强度都随载气流量增加而减小。4. 观察高度较低,硬线强度及线背比较大,反这则软线强度及线背比较大;多数元素的背景强度随观察高度增高而减小。5. 向粉末悬沲体中加入少量异丙醇,多数元素的背景强度减少,谱线强度及线背比增大。6. 增大样品提升率,谱线强度和线背比都随之增大。7. 增大粉末悬沲体的浓度,谱线强度增加,但浓度太大易堵,我们认为浓度为10mg/ml较合适。本文用元素间干扰比较正谱线干扰,用不同形态的样品(溶液和固体粉末悬浮体)测定其干扰比,发现它的干扰比数值相近。用一套人工合成样品做工作曲线,动态范围较宽,检出限与溶液法相当。相对标准偏差为1.4 ~ 4.6%,相关系数大于0.997。我们还用八个GSD水系沉积物标准参考样品做校准曲线,检出限和相对标准偏差,实验表明:加大功率有助于克服粒度和矿物组成不同等因素对分析元素的影响,八个GSD样品与人工合成标样符合较好。用直接粉末法分析样品时有基体干扰,用GSD样品做的检出限和相对标准偏差都不如合成样品。用该方法分析人工材料中的杂质可能更为合适。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

本文提出了用ICP-AES直接同时测定高纯金属钕中镧、铈、镨、钐和钇的新方法。描述了在钕样品溶液中加入乙醇后对测定灵敏度的影响,乙醉量的影响以及ICP的几个主要工作参数的选择等。当样品溶液中稀土元素的总浓度为5毫克/毫升,乙醇浓度为70%(V/V)时,测定下限分别为镧0.0020%,铈0.0030%,镨0.010%,钐0.0050%和钇0.0010%其相对标准偏差为2.9-5.7%。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A flow-injection system for multielemental analysis with a mercury(II) preconcentration step using a resin Chelite-S(R)(Serva Feinbiochemica Heidelberg, Part No. 41709) packed minicolumn by inductively coupled plasma atomic emission spectroscopy is described. A mercury reductive elution procedure with a mixture of SnCl2/HCl was used, which allows use of 6 mol/L HCl solution instead of concentrated hydrochoric acid. The main parameters related to ICP operation, such as radio frequency power (950-1750 W), auxiliary argon flow (0.0-1.5 L/min) and spray chamber nebulizer pressure (15-35 psi), were studied. Optimization of the FIA system was reached by defining the best eluent carrier stream (1.4-2.8 mL/min), Hgdegrees carrier stream (10-40 mL min(-1)), loading time (0.5-4.0 min), sample flow rate (1.25-10.0 mL/min), temperature of reactor gas liquid separator (GLS) (25-75 degreesC) and eluent volume (50-350 muL). Throughput is around 30 samples per hour for analytical solutions within the range 50-2500 ng Hg(II)/L. Results from certified material showed good precision (RSD < 3%, n = 12) and no statistical difference was observed for real samples analyzed by AAS and by the proposed system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The catalytic performance of metals can be enhanced by intimately alloying different metals with Reduced Graphene Oxide (RGO). In this work, we have demonstrated a simplistic in situ one-step reduction approach for the synthesis of RGO/Pt-Ni nanocatalysts with different atomic ratios of Pt and Ni, without using any capping agent. The physical properties of the as-synthesized nanocatalysts have been systematically investigated by XRD, FTIR, Raman spectroscopy, XPS, EDX, ICP-AES, and TEM. The composition dependent magnetic properties of the RGO/Pt-Ni nanocatalysts were investigated at 5 and 300 K, respectively. The results confirm that the RGO/Pt-Ni nanocatalysts show a super-paramagnetic nature at room temperature in all compositions. Furthermore, the catalytic activities of the RGO/Pt-Ni nanocatalysts were investigated by analyzing the reduction of p-nitrophenol, and the reduction rate was found to be susceptible to the composition of Pt and Ni. Moreover, it has been found that RGO/Pt-Ni nanocatalysts show superior catalytic activity compared with the bare Pt-Ni of the same composition. Interestingly, the nanocatalysts can be readily recycled by a strong magnet and reused for the next reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.