730 resultados para Hyperspectral image


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitorar a condição de uso de toda a extensão das rodovias brasileiras é tarefa dispendiosa e demorada. Este trabalho trata de novas técnicas que permitem o levantamento da condição da superfície dos pavimentos rodoviários de forma ágil utilizando imagens hiperespectrais de sensor digital aeroembarcado. Nos últimos anos, um número crescente de imagens de alta resolução espacial tem surgido no mercado mundial com o aparecimento dos novos satélites e sensores aeroembarcados de sensoriamento remoto. Propõe-se uma metodologia para identificação dos pavimentos asfálticos e classificação das principais ocorrências dos defeitos na superfície do pavimento. A primeira etapa da metodologia é a identificação da superfície asfáltica na imagem, utilizando uma classificação híbrida baseada inicialmente em pixel e depois refinada por objetos. A segunda etapa da metodologia é a identificação e classificação das ocorrências dos principais defeitos nos pavimentos flexíveis que são observáveis nas imagens de alta resolução espacial. Esta última etapa faz uso intensivo das novas técnicas de classificação de imagens baseadas em objetos. O resultado final é a geração de índices da condição da superfície do pavimento a partir das imagens que possam ser comparados com os indicadores vigentes da condição da superfície do pavimento já normatizados pelos órgãos competentes no país.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fresh-cut or minimally processed fruit and vegetables have been physically modified from its original form (by peeling, trimming, washing and cutting) to obtain a 100% edible product that is subsequently packaged (usually under modified atmosphere packaging –MAP) and kept in refrigerated storage. In fresh-cut products, physiological activity and microbiological spoilage, determine their deterioration and shelf-life. The major preservation techniques applied to delay spoilage are chilling storage and MAP, combined with chemical treatments antimicrobial solutions antibrowning, acidulants, antioxidants, etc.). The industry looks for safer alternatives. Consequently, the sector is asking for innovative, fast, cheap and objective techniques to evaluate the overall quality and safety of fresh-cut products in order to obtain decision tools for implementing new packaging materials and procedures. In recent years, hyperspectral imaging technique has been regarded as a tool for analyses conducted for quality evaluation of food products in research, control and industries. The hyperspectral imaging system allows integrating spectroscopic and imaging techniques to enable direct identification of different components or quality characteristics and their spatial distribution in the tested sample. The objective of this work is to develop hyperspectral image processing methods for the supervision through plastic films of changes related to quality deterioration in packed readyto-use leafy vegetables during shelf life. The evolutions of ready-to-use spinach and watercress samples covered with three different common transparent plastic films were studied. Samples were stored at 4 ºC during the monitoring period (until 21 days). More than 60 hyperspectral images (from 400 to 1000 nm) per species were analyzed using ad hoc routines and commercial toolboxes of MatLab®. Besides common spectral treatments for removing additive and multiplicative effects, additional correction, previously to any other correction, was performed in the images of leaves in order to avoid the modification in their spectra due to the presence of the plastic transparent film. Findings from this study suggest that the developed images analysis system is able to deal with the effects caused in the images by the presence of plastic films in the supervision of shelf-life in leafy vegetables, in which different stages of quality has been identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las imágenes hiperespectrales permiten extraer información con una gran resolución espectral, que se suele extender desde el espectro ultravioleta hasta el infrarrojo. Aunque esta tecnología fue aplicada inicialmente a la observación de la superficie terrestre, esta característica ha hecho que, en los últimos años, la aplicación de estas imágenes se haya expandido a otros campos, como la medicina y, en concreto, la detección del cáncer. Sin embargo, este nuevo ámbito de aplicación ha generado nuevas necesidades, como la del procesado de las imágenes en tiempo real. Debido, precisamente, a la gran resolución espectral, estas imágenes requieren una elevada capacidad computacional para ser procesadas, lo que imposibilita la consecución de este objetivo con las técnicas tradicionales de procesado. En este sentido, una de las principales líneas de investigación persigue el objetivo del tiempo real mediante la paralelización del procesamiento, dividiendo esta carga computacional en varios núcleos que trabajen simultáneamente. A este respecto, en el presente documento se describe el desarrollo de una librería de procesado hiperespectral para el lenguaje RVC - CAL, que está específicamente pensado para el desarrollo de aplicaciones multimedia y proporciona las herramientas necesarias para paralelizar las aplicaciones. En concreto, en este Proyecto Fin de Grado se han desarrollado las funciones necesarias para implementar dos de las cuatro fases de la cadena de análisis de una imagen hiperespectral - en concreto, las fases de estimación del número de endmembers y de la estimación de la distribución de los mismos en la imagen -; conviene destacar que este trabajo se complementa con el realizado por Daniel Madroñal en su Proyecto Fin de Grado, donde desarrolla las funciones necesarias para completar las otras dos fases de la cadena. El presente documento sigue la estructura clásica de un trabajo de investigación, exponiendo, en primer lugar, las motivaciones que han cimentado este Proyecto Fin de Grado y los objetivos que se esperan alcanzar con él. A continuación, se realiza un amplio análisis del estado del arte de las tecnologías necesarias para su desarrollo, explicando, por un lado, las imágenes hiperespectrales y, por otro, todos los recursos hardware y software necesarios para la implementación de la librería. De esta forma, se proporcionarán todos los conceptos técnicos necesarios para el correcto seguimiento de este documento. Tras ello, se detallará la metodología seguida para la generación de la mencionada librería, así como el proceso de implementación de una cadena completa de procesado de imágenes hiperespectrales que permita la evaluación tanto de la bondad de la librería como del tiempo necesario para analizar una imagen hiperespectral completa. Una vez expuesta la metodología utilizada, se analizarán en detalle los resultados obtenidos en las pruebas realizadas; en primer lugar, se explicarán los resultados individuales extraídos del análisis de las dos etapas implementadas y, posteriormente, se discutirán los arrojados por el análisis de la ejecución de la cadena completa, tanto en uno como en varios núcleos. Por último, como resultado de este estudio se extraen una serie de conclusiones, que engloban aspectos como bondad de resultados, tiempos de ejecución y consumo de recursos; asimismo, se proponen una serie de líneas futuras de actuación con las que se podría continuar y complementar la investigación desarrollada en este documento. ABSTRACT. Hyperspectral imaging collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for example, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. For that reason, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization: in order to reduce the computational load, this solution executes image analysis in several processors simultaneously; in that way, this computational load is divided among the different cores, and real-time specifications can be accomplished. This document describes the construction of a new hyperspectral processing library for RVC - CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This Diploma Project develops the required library functions to implement two of the four stages of the hyperspectral imaging processing chain - endmember and abundance estimations -. The two other stages - dimensionality reduction and endmember extraction - are studied in the Diploma Project of Daniel Madroñal, which complements the research work described in this document. The document follows the classical structure of a research work. Firstly, it introduces the motivations that have inspired this Diploma Project and the main objectives to achieve. After that, it thoroughly studies the state of the art of the technologies related to the development of the library. The state of the art contains all the concepts needed to understand the contents of this research work, like the definition and applications of hyperspectral imaging and the typical processing chain. Thirdly, it explains the methodology of the library implementation, as well as the construction of a complete processing chain in RVC - CAL applying the mentioned library. This chain will test both the correct behavior of the library and the time requirements for the complete analysis of one hyperspectral image, either executing the chain in one processor or in several ones. Afterwards, the collected results will be carefully analyzed: first of all, individual results -from endmember and abundance estimations stages - will be discussed and, after that, complete results will be studied; this results will be obtained from the complete processing chain, so they will analyze the effects of multithreading and system parallelization on the mentioned processing chain. Finally, as a result of this discussion, some conclusions will be gathered regarding some relevant aspects, such as algorithm behavior, execution times and processing performance. Likewise, this document will conclude with the proposal of some future research lines that could continue the research work described in this document.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)–Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in discriminating sugarcane areas affected by 'orange rust' ( Puccinia kuehnii ) disease. Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf internal structure, and leaf water content, were generated from an image acquired over Mackay, Queensland, Australia. Discriminant function analysis was used to select an optimum set of indices based on their correlations with the discriminant function. The predictive ability of each index was also assessed based on the accuracy of classification. Results demonstrated that Hyperion imagery can be used to detect orange rust disease in sugarcane crops. While some indices that only used visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-affected areas. The newly formulated 'Disease-Water Stress Indices' (DWSI-1=R800/R1660; DSWI-2=R1660/R550; DWSI-5=(R800+R550)/(R1660+R680)) produced the largest correlations, indicating their superior ability to discriminate sugarcane areas affected by orange rust disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proceedings of International Conference Conference Volume 7830 Image and Signal Processing for Remote Sensing XVI Lorenzo Bruzzone Toulouse, France | September 20, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing. This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.