935 resultados para Hydraulic jump
Resumo:
Velocity jump processes are discrete random walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity jump models are often used to represent a type of persistent motion, known as a “run and tumble”, which is exhibited by some isolated bacteria cells. All previous velocity jump processes are non-interacting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high cell density problems using a velocity jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.
Resumo:
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-time MUNE method has proved elusive hitherto. Ridall et al. (2007) implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to produce a posterior distribution for the number of motor units using a Bayesian hierarchical model that takes into account biological information about motor unit activation. However we find that the approach can be unreliable for some datasets since it can suffer from poor cross-dimensional mixing. Here we focus on improved inference by marginalising over latent variables to create the likelihood. In particular we explore how this can improve the RJMCMC mixing and investigate alternative approaches that utilise the likelihood (e.g. DIC (Spiegelhalter et al., 2002)). For this model the marginalisation is over latent variables which, for a larger number of motor units, is an intractable summation over all combinations of a set of latent binary variables whose joint sample space increases exponentially with the number of motor units. We provide a tractable and accurate approximation for this quantity and also investigate simulation approaches incorporated into RJMCMC using results of Andrieu and Roberts (2009).
Resumo:
In this paper, we analyse the impact of a (small) heterogeneity of jump type on the most simple localized solutions of a 3-component FitzHugh–Nagumo-type system. We show that the heterogeneity can pin a 1-front solution, which travels with constant (non-zero) speed in the homogeneous setting, to a fixed, explicitly determined, distance from the heterogeneity. Moreover, we establish the stability of this heterogeneous pinned 1-front solution. In addition, we analyse the pinning of 1-pulse, or 2-front, solutions. The paper is concluded with simulations in which we consider the dynamics and interactions of N-front patterns in domains with M heterogeneities of jump type (N = 3, 4, M ≥ 1).
On the effective hydraulic conductivity and macrodispersivity for density-dependent groundwater flow
Resumo:
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.
Resumo:
This paper presents a methodology for determining the vertical hydraulic conductivity (Kv) of an aquitard, in a multilayered leaky system, based on the harmonic analysis of arbitrary water-level fluctuations in aquifers. As a result, Kv of the aquitard is expressed as a function of the phase-shift of water-level signals measured in the two adjacent aquifers. Based on this expression, we propose a robust method to calculate Kv by employing linear regression analysis of logarithm transformed frequencies and phases. The frequencies, where the Kv are calculated, are identified by coherence analysis. The proposed methods are validated by a synthetic case study and are then applied to the Westbourne and Birkhead aquitards, which form part of a five-layered leaky system in the Eromanga Basin, Australia.
Resumo:
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.
Resumo:
This research project contributed to the in-depth understanding of the influence of hydrologic and hydraulic factors on the stormwater treatment performance of constructed wetlands and bioretention basins in the "real world". The project was based on the comprehensive monitoring of a Water Sensitive Urban Design treatment train in the field and underpinned by complex multivariate statistical analysis. The project outcomes revealed that the reduction in pollutant concentrations were consistent in the constructed wetland, but was highly variable in the bioretention basin to a range of influential factors. However, due to the significant amount retention within the filter media, all pollutant loadings were reduced in the bioretention basin.
Resumo:
Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called "residual order spectrogram", i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.
Resumo:
The purpose of this paper is to introduce the concept of hydraulic damage and its numerical integration. Unlike the common phenomenological continuum damage mechanics approaches, the procedure introduced in this paper relies on mature concepts of homogenization, linear fracture mechanics, and thermodynamics. The model is applied to the problem of fault reactivation within resource reservoirs. The results show that propagation of weaknesses is highly driven by the contrasts of properties in porous media. In particular, it is affected by the fracture toughness of host rocks. Hydraulic damage is diffused when it takes place within extended geological units and localized at interfaces and faults.
Resumo:
In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.
Resumo:
Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high-resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.
Resumo:
Full-resolution 3D Ground-Penetrating Radar (GPR) data were combined with high-resolution hydraulic conductivity (K) data from vertical Direct-Push (DP) profiles to characterize a portion of the highly heterogeneous MAcro Dispersion Experiment (MADE) site. This is an important first step to better understand the influence of aquifer heterogeneities on observed anomalous transport. Statistical evaluation of DP data indicates non-normal distributions that have much higher similarity within each GPR facies than between facies. The analysis of GPR and DP data provides high-resolution estimates of the 3D geometry of hydrostratigraphic zones, which can then be populated with stochastic K fields. The lack of such estimates has been a significant limitation for testing and parameterizing a range of novel transport theories at sites where the traditional advection-dispersion model has proven inadequate.
Resumo:
The DVD, Jump into Number, was a joint project between Independent Schools Queensland, Queensland University of Technology and Catholic Education (Diocese of Cairns) aimed at improving mathematical practice in the early years. Independent Schools Queensland Executive Director Dr John Roulston said the invaluable teaching resource features a series of unscripted lessons which demonstrate the possibilities of learning among young Indigenous students. “Currently there is a lack of teaching resources for numeracy in younger students, especially from pre Prep to Year 3 which is such an important stage of a child’s early education. Jump into Number is a benchmark for all teachers to learn more about the mathematical development of younger students,” Dr Roulston said.
Resumo:
Management of sodic soils under irrigation often requires application of chemical ameliorants to improve permeability combined with leaching of excess salts. Modeling irrigation, soil treatments, and leaching in these sodic soils requires a model that can adequately represent the physical and chemical changes in the soil associated with the amelioration process. While there are a number of models that simulate reactive solute transport, UNSATCHEM and HYDRUS-1D are currently the only models that also include an ability to simulate the impacts of soil chemistry on hydraulic conductivity. Previous researchers have successfully applied these models to simulate amelioration experiments on a sodic loam soil. To further gauge their applicability, we extended the previous work by comparing HYDRUS simulations of sodic soil amelioration with the results from recently published laboratory experiments on a more reactive, repacked sodic clay soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. Differences between measured and simulated results were attributed to the limited flexibility of the function that represents chemistry-dependent hydraulic conductivity in HYDRUS. While improvements in the function could be made, the present work indicates that HYDRUS-UNSATCHEM captures the key changes in soil hydraulic properties that occur during sodic clay soil amelioration and thus extends the findings of previous researchers studying sodic loams.