991 resultados para Human exposures
Resumo:
This study evaluated the histomorphologic response of human dental pulps capped with mineral trioxide aggregate (MTA) and Ca(OH)(2) cement (CH). Pulp exposures were performed on the occlusal floor of 40 human permanent premolars. After that, the pulp was capped either with CH or MTA and restored with composite resin. After 30 and 60 days, teeth were extracted and processed for histologic exam and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha = .05). All groups performed well in terms of hard tissue bridge formation, inflammatory response, and other pulpal findings. However, a lower response of CH30 was observed for the dentin bridge formation, when compared with MTA30 and MTA60 groups. Although the pulp healing with calcium hydroxide was slower than that of MTA, both materials were successful for pulp capping in human teeth.
Resumo:
The aim of this study was to evaluate the response of human pulps capped with a calcium hydroxide hard-setting cement or with two-step self-etch adhesive systems. Pulp exposures were performed on the occlusal floor, and the bleeding control was performed with saline solution. The exposed pulp tissue was capped with Clearfil LB 2V (2V) or Clearfil SE Bond (SE) and restored with a composite resin. In control group, the pulpal wound was capped with Ca(OH)(2) cement and restored with Clearfil LB 2V or Clearfil SE Bond + composite resin. After 30 and 90 days, the teeth were extracted, processed for hematoxylin and eosin, and categorized in a histological score system. The pulpal response was worse for groups capped with the self-etch adhesive systems (2V and SE) in both periods of evaluation, when compared to their respective control groups at 90 days (p < 0.05). For both self-etch systems evaluated, the pulp tissue exhibited moderate to severe inflammatory cell infiltrate involving the coronal pulp with chronic abscesses. Dentin bridging was observed in a few specimens. For the calcium hydroxide groups, almost all specimens showed dentin bridge formation, with few scattered inflammatory cells and normal tissue below the pulp exposure site. Calcium hydroxide should be used as the material of choice for pulp capping, and the use of two-step self-etch adhesives for human pulp capping is contraindicated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many in vivo studies have stated that the response of the dentin/pulp complex does not depend on the dental material used as the liner or pulp-capping agent. However, several in vitro studies have reported the metabolic cytotoxic effects of resin components applied to fibroblast and odontoblast cell lines. The aim of this study was to evaluate the human pulp response following direct pulp capping with current bonding agents and calcium hydroxide (CH). Sound premolars scheduled for orthodontic extraction had their pulp tissue mechanically exposed. After hemorrhage control and total acid conditioning, the experimental bonding agents, including All Bond 2, Scotchbond MP-Plus, Clearfil Liner Bond 2, and Prime & Bond 2.1 were applied on the pulp exposure site. CH saline paste was used as the control pulp-capping agent. All cavities were restored with Z-100 resin composite according to the manufacturer's instructions. Following extractions, the teeth were processed for microscopic evaluation. In the short term, the bonding agents elicited a moderate inflammatory pulp response with associated dilated and congested blood vessels adjacent to the pulp exposure site. A mild inflammatory pulp response was observed when Clearfil Liner Bond 2 or CH was applied on the pulp exposures. With time, macrophages and giant cells engulfing globules and components of all experimental bonding agents displaced into the pulp space were seen. This chronic inflammatory response did not allow complete pulp repair, which interfered with the dentin bridge formation. Pulp exposures capped with CH exhibited an initial organization of elongated pulp cells underneath the coagulation necrosis. CH stimulated early pulp repair and dentin bridging that extended into the longest period. The bonding agents evaluated in the present study cannot be recommended for pulp therapy on sound human teeth.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH) 2 powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH) 2 powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (α=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item Inflammation and General State of the Pulp (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item Other Pulpal Findings, MTA and Ca(OH) 2 showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH) 2 powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH) 2 powder or MTA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate. © Operative Dentistry, 2008.
Resumo:
Aim: The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Methodology: Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (α = 0.05). Results: In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Conclusions: Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth. © 2009 International Endodontic Journal.
Resumo:
Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning Electron Microscopy (SEM). Materials and Methods: Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm2 during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted in this study followed the application protocols advised by manufacturers. Evaluation of groups submitted to 35% carbamide peroxide was carried out after two time intervals (30 minutes and 2 hours per session), following the extreme situations recommended by the manufacturer. Specimens were prepared for SEM analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Results: Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Conclusion: Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel damage could be noticed. Clinical significance: In-office bleaching materials may adversely affect enamel morphology and therefore should be used with caution.
Resumo:
A steady state multi-segmented heat transfer model of the human upper limbs was developed. The main purpose was to evaluate the impact of blood flow through superficial veins and subcutaneous vascular structures in the palm of the hands over the heat transfer between the limbs and the environment. The distinguishing feature of the model is the inclusion of a detailed circulatory network composed of vessels with diameter larger than 1 mm. The model was validated by comparing its results from exposures to a hot, a neutral, and a cold environment to experimental data presented in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
AIMS This study's objective is to assess the safety of non-therapeutic atomoxetine exposures reported to the US National Poison Database System (NPDS). METHODS This is a retrospective database study of non-therapeutic single agent ingestions of atomoxetine in children and adults reported to the NPDS between 2002 and 2010. RESULTS A total of 20 032 atomoxetine exposures were reported during the study period, and 12 370 of these were single agent exposures. The median age was 9 years (interquartile range 3, 14), and 7380 were male (59.7%). Of the single agent exposures, 8813 (71.2%) were acute exposures, 3315 (26.8%) were acute-on-chronic, and 166 (1.3%) were chronic. In 10 608 (85.8%) cases, exposure was unintentional, in 1079 (8.7%) suicide attempts, and in 629 (5.1%) cases abuse. Of these cases, 3633 (29.4 %) were managed at health-care facilities. Acute-on-chronic exposure was associated with an increased risk of a suicidal reason for exposure compared with acute ingestions (odds ratio 1.44, 95% confidence interval 1.26-1.65). Most common clinical effects were drowsiness or lethargy (709 cases; 5.7%), tachycardia (555; 4.5%), and nausea (388; 3.1%). Major toxicity was observed in 21 cases (seizures in nine (42.9%), tachycardia in eight (38.1%), coma in six (28.6%), and ventricular dysrhythmia in one case (4.8%)). CONCLUSIONS Non-therapeutic atomoxetine exposures were largely safe, but seizures were rarely observed.
Resumo:
'Reproduced with permission from Environmental Health Perspectives'
Resumo:
BACKGROUND As an alternative to the modified Stoppa approach, the Pararectus approach is used clinically for treatment of acetabular fractures involving the anterior column. The current study assessed the surgical exposure and the options for instrumentation using both of these approaches. METHODS Surgical dissections were conducted on five human cadavers (all male, mean age 88 years (82-97)) using the modified Stoppa and the Pararectus approach, with the same skin incision length (10cm). Distal boundaries of the exposed bony surfaces were marked using a chisel. After removal of all soft-tissues, distances from the boundaries in the false and true pelvis were measured with reference to the pelvic brim. The exposed bone was coloured and calibrated digital images of each inner hemipelvis were taken. The amount of exposed surface using both approaches was assessed and represented as a percentage of the total bony surface of each hemipelvis. For instrumentation, a suprapectineal quadrilateral buttress plate was used. Screw lengths were documented, and three-dimensional CT reconstructions were performed to assess screw trajectories qualitatively. Wilcoxon's signed rank test for paired groups was used (level of significance: p<0.05). RESULTS After utilization of the Pararectus approach, the distances from the farthest boundaries of exposed bone towards the pelvic brim were significantly higher in the false but not the true pelvis, compared to the modified Stoppa approach. The percentage (mean±SD) of exposed bone accessible after utilizing the Pararectus approach was 42±8%, compared to 29±6% using the modified Stoppa (p=0.011). In cadavers exposed by the Pararectus approach, screws placed for posterior fixation and as a posterior column screw were longer by factor 1.8 and 2.1, respectively (p<0.05), and screws could be placed more posteromedial towards the posterior inferior iliac spine or in line with the posterior column directed towards the ischial tuberosity. CONCLUSION Compared to the modified Stoppa, the Pararectus approach facilitates a greater surgical access in the false pelvis, provides versatility for fracture fixation in the posterior pelvic ring and allows for the option to extend the approach without a new incision.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 µm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 µg/mg tissue within the top 100 µm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 µg/mg tissue below 300 µm). After 24 h of exposure, there was more chlorhexidine within the upper 100-µm sections (7.88 ± 1.37 µg/mg tissue); however, the levels remained low (less than 1 µg/mg tissue) at depths below 300 µm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.
Resumo:
The effects of the alpha-diketone derivatives 2,3- and 3,4-hexanediones were investigated in three non-neuronal cell lines (MCF7, HepG2 and CaCo-2) as well as in the neuroblastoma line, SH-SY5Y. The MTT reduction assay was employed to determine the necrotic effects of the alpha-diketones and the neurotoxin 2,5-hexanedione over 4, 24 and 48 hr exposures. Flow cytometry was also used to study the effects of the three isomers on the cell cycle of the SH-SY5Y line only. With 2,5-hexanedione, the mean MTT IC50 decreased more than 10-fold from 4 to 48 hr. The toxicities of both alpha-diketones were similar, with a more than 18-fold increase in sensitivity of the SH-SY5Y at 24 hr compared to that of 4 hr. With flow cytometry at 48 hr, SH-SY5Y apoptosis with 2,5-hexanedione rose throughout the concentration range evaluated (0-30 mM) while 2,3- and 3,4-hexanediones showed apoptosis over the concentration range 1-1.6 mM, with 3,4-hexanedione being the more potent compared to the 2,3-isomer. At 1.6 mM nearly all the cells had entered apoptosis in the presence of the 3,4-isomer, (94.9 ± 1.4%) but only 57.5 ±4.1% of the 2,3-isomer-treated cells had reached that stage. The 2,3-and 3,4-isomers in diets alone may not pose a serious threat to human health. Further studies may be necessary to evaluate the effects of other dietary components on their toxicity. These alpha-diketones also display a degree of toxic selectivity towards neuroblastoma cells, which may have therapeutic implications.