955 resultados para Human androgen receptor gene
Resumo:
The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.
Resumo:
The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.
Resumo:
The rodent liver displays marked age- and sex-dependent changes in androgen sensitivity due to the sexually dimorphic and temporally programmed expression of the androgen receptor (AR) gene. We have altered this normal phenotype by constitutive overexpression of the rat AR transgene in the mouse liver by targeting it via the human phenylalanine hydroxylase (hPAH) gene promoter. These transgenic animals in their heterozygous state produce an approximately 30-fold higher level of the AR in the liver as compared with the nontransgenic control. Androgen inactivation via sulfonation of the hormone by dehydroepiandrosterone sulfotransferase (DST), an androgen-repressible enzyme, also contributes to the age- and sex-dependent regulation of hepatic androgen sensitivity. DST has a broad range of substrate specificity and is responsible for the age- and sex-specific activation of certain polycyclic aromatic hepatocarcinogens as well, by converting them to electrophilic sulfonated derivatives. In the transgenic female, the hepatic expression of DST was approximately 4-fold lower than in normal females, a level comparable to that in normal males. The hPAH-AR mice will serve as a valuable model for studying the sex- and age-invariant expression of liver-specific genes, particularly those involved in the activation of environmental hepatocarcinogens such as the aromatic hydrocarbons.
Resumo:
We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
A previous study has suggested that a G to A base change at position 169 of the GHRH-receptor gene in human somatotrophinomas is a mutation and confers hypersensitivity to GHRH. The alternative base converts codon 57 from GCG to AGC, resulting in replacement of alanine (Ala) with threonine (Thr). In the present study, two of five human GH-secreting somatotrophinomas were found to possess the codon 57 AGC sequence. The GCG allele was also detected, indicating heterozygosity. However, the patients' normal blood-derived DNA also yielded the same sequence pattern, indicating that the Ala=> Thr amino acid change is a normal polymorphism, and not a somatic mutation. Nevertheless, in vitro, the tumors possessing the Ala=> Thr amino acid change responded very strongly to GHRH in terms of cAMP formation, being increased 40- and 200-fold, in comparison to the 2-fold increases by tumors without the alternative GHRH-receptor sequence. Likewise, the in vitro response of GH secretion to GHRH was elevated. One of the two tumors with the alternative Thr residue, and the highest responder to GHRH, possessed a gsp muration, despite the fact that these defects are thought to reduce responsiveness to GHRH. These results fail to confirm that the GCG => AGC at codon 57 of the GHRH-receptor gene is a mutation, but do support the concept that the alternative form with Thr confers increased sensitivity to GHRH. (C) 2000 Academic Press.
Resumo:
The androgen insensitivity syndrome (AIS) is described as a dysfunction of the androgen receptor (AR) in 46,XY individuals, which can be associated with mutations in the AR gene or can be due to unknown mechanisms. Different mutations in AIS generally cause variable phenotypes that range from a complete hormone resistance to a mild form usually associated with male infertility. The purpose of this study was to search for mutations in the AR gene in a fertile man with gynecomastia and to evaluate the influence of the mutation on the AR transactivation ability. Sequencing of the AR gene revealed the p.Pro695Ser mutation. It is located within the AR ligand-binding domain. Bioinformatics analysis indicated a deleterious role, which was verified after testing transactivation activity and N-/C-terminal (N/C) interaction by in vitro expression of a reporter gene and 2-hybrid assays. p.Pro695Ser showed low levels of both transactivation activity and N/C interaction at low dihydrotestosterone (DHT) conditions. As the ligand concentration increased, both transactivation activity and N/C interaction also increased and reached normal levels. Therefore, this study provides functional insights for the p.Pro695Ser mutation described here for the first time in a patient with mild AIS. The expression profile of p.Pro695Ser not only correlates to the patient's phenotype, but also suggests that a high-dose DHT therapy may overcome the functional deficit of the mutant AR.
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
Human sulfotransferase SULT1A1 is an important phase II xenobiotic metabolizing enzyme that is highly expressed in the liver and mediates the sulfonation of drugs, carcinogens, and steroids. Until this study, the transcriptional regulation of the SULT1A subfamily had been largely unexplored. Preliminary experiments in primary human hepatocytes showed that SULT1A mRNA levels were not changed in response to nuclear receptor activators, such as dexamethasone and 3-methylcolanthrene, unlike other metabolizing enzymes. Using HepG2 cells, the high activity of the TATA-less SULT1A1 promoter was shown to be dependent on the presence of Sp1 and Ets transcription factor binding sites (EBS), located within - 112 nucleotides from the transcriptional start site. The homologous promoter of the closely related SULT1A3 catecholamine sulfotransferase, which is expressed at negligible levels in the adult liver, displayed 70% less activity than SULT1A1. This was shown to be caused by a two-base pair difference in the EBS. The Ets transcription factor GA binding protein (GABP) was shown to bind the SULT1A1 EBS and could transactivate the SULT1A1 promoter in Drosophila melanogaster S2 cells. Cotransfection of Sp1 could synergistically enhance GABP-mediated activation by 10-fold. Although Sp1 and GABP alone could induce SULT1A3 promoter activity, the lack of the EBS on this promoter prevented a synergistic interaction between the two factors. This study reports the first insight into the transcriptional regulation of the SULT1A1 gene and identifies a crucial difference in regulation of the closely related SULT1A3 gene, which accounts for the two enzymes' differential expression patterns observed in the adult liver.
Resumo:
The contribution of kinins to the beneficial effects in cardiovascular risk reductions remains unclear. In this context, the present study examined whether the +9bp/-9 bp polymorphism in bradykinin type 2 receptor gene, predicts hypertension risk in a large urban Brazilian population. Our finding indicated that the -9 bp allele may contribute to hypertension because of increased diastolic pressure.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Genetic and functional data indicate that variation in the expression of the neurotrophin-3 receptor gene (NTRK3) may have an impact on neuronal plasticity, suggesting a role for NTRK3 in the pathophysiology of anxiety disorders. MicroRNA (miRNA) posttranscriptional gene regulators act by base-pairing to specific sequence sites, usually at the 3'UTR of the target mRNA. Variants at these sites might result in gene expression changes contributing to disease susceptibility. We investigated genetic variation in two different isoforms of NTRK3 as candidate susceptibility factors for anxiety by resequencing their 3'UTRs in patients with panic disorder (PD), obsessive-compulsive disorder (OCD), and in controls. We have found the C allele of rs28521337, located in a functional target site for miR-485-3p in the truncated isoform of NTRK3, to be significantly associated with the hoarding phenotype of OCD. We have also identified two new rare variants in the 3'UTR of NTRK3, ss102661458 and ss102661460, each present only in one chromosome of a patient with PD. The ss102661458 variant is located in a functional target site for miR-765, and the ss102661460 in functional target sites for two miRNAs, miR-509 and miR-128, the latter being a brain-enriched miRNA involved in neuronal differentiation and synaptic processing. Interestingly, these two variants significantly alter the miRNA-mediated regulation of NTRK3, resulting in recovery of gene expression. These data implicate miRNAs as key posttranscriptional regulators of NTRK3 and provide a framework for allele-specific miRNA regulation of NTRK3 in anxiety disorders.
Resumo:
A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.
Resumo:
Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.