997 resultados para Host Behaviour


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory emission of CO2 from roots is frequently proposed as an attractant that allows soil-dwelling insects to locate host plant roots, but this role has recently become less certain. CO2 is emitted from many sources other than roots, so does not necessarily indicate the presence of host plants, and because of the high density of roots in the upper soil layers, spatial gradients may not always be perceptible by soil-dwelling insects. The role of CO2 in host location was investigated using the clover root weevil Sitona lepidus Gyllenhall and its host plant white clover (Trifolium repens L.) as a model system. Rhizochamber experiments showed that CO2 concentrations were approximately 1000 ppm around the roots of white clover, but significantly decreased with increasing distance from roots. In behavioural experiments, no evidence was found for any attraction by S. lepidus larvae to point emissions of CO2, regardless of emission rates. Fewer than 15% of larvae were attracted to point emissions of CO2, compared with a control response of 17%. However, fractal analysis of movement paths in constant CO2 concentrations demonstrated that searching by S. lepidus larvae significantly intensified when they experienced CO2 concentrations similar to those found around the roots of white clover (i.e. 1000 ppm). It is suggested that respiratory emissions of CO2 may act as a 'search trigger' for S. lepidus, whereby it induces larvae to search a smaller area more intensively, in order to detect location cues that are more specific to their host plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entomopathogenic nematodes are able to survive by scavenging. We tested Steinernema feltiae, S. affine and Heterorhabditis megidis alone or in different combinations to evaluate the responses of these nematodes when dead or live Galleria mellonella larvae were offered. Steinernema feltiae and S. affine scavenged upon dead G. mellonella larvae and about 30% more dead larvae were penetrated than live ones. By contrast, H. megidis penetrated more live larvae than dead ones. When the nematode species were combined, the results varied among the combinations, but the dead larvae were always used as a host. The behaviour of natural field populations of S. feltiae and S. affine was also compared. Steinernema feltiae showed no difference between scavenging and performing 'normal infections', whereas S. affine scavenged to a reduced amount (around 60% less); this difference could be related to the particular foraging strategy of these nematodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of semiochemicals for the manipulation of the pollen beetle, Meliethes aeneus (Fabricius) (Coleoptera: Nitidulidae), is being investigated for potential incorporation into a push-pull strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. Previous laboratory behavioural studies using volatiles from non-host plants showed that M. aeneus is repelled by the odour of lavender, Lavendula angustifolia Mill. (Lamiaceae), essential oil. This article reports on semi-field and field trials to investigate this behaviour under more realistic conditions. Semi-field experiments were conducted to assess the relative importance of olfaction at different points in host location behaviour by M. aeneus. The results showed that oilseed rape plants treated with lavender odour were less colonised by M. aeneus in comparison with an untreated control, but that the treatment effect was much reduced if the lavender odour was applied after colonisation. The field experiment demonstrated that lavender odour caused a significant reduction in the number of adultM. aeneus infesting the oilseed rape plants in the treatment plots compared to the control plots. Overall, these findings are very encouraging for the future development of a push-pull pest control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterized four Brazilian trypanosomes isolated from domestic rats and three from captive nonhuman primates that were morphologically similar to T. lewisi, a considered non-pathogenic species restricted to rodents and transmitted by fleas, despite its potential pathogenicity for infants. These isolates were identified as T. lewisi by barcoding using V7V8 SSU rDNA sequences. In inferred phylogenetic trees, all isolates clustered tightly with reference T. lewisi and T. lewisi-like trypanosomes from Europe, Asia and Africa and despite their high sequence conservation formed a homogeneous clade separate from other species of the subgenus T. (Herpetosoma). With the aim of clearly resolving the relationships between the Brazilian isolates from domestic rats and primates, we compared sequences from more polymorphic ITS rDNA. Results corroborated that isolates from Brazilian rats and monkeys were indeed of the same species and quite close to T. lewisi isolates of humans and rats from different geographical regions. Morphology of the monkey isolates and their behaviour in culture and in experimentally infected rats were also compatible with T. lewisi. However, infection with T. lewisi is rare among monkeys. We have examined more than 200 free-ranging and 160 captive monkeys and found only three infected individuals among the monkeys held in captivity. The findings of this work suggest that proximity of monkeys and infected rats and their exposure to infected fleas may be responsible for the host switching of T. Iewisi from their natural rodent species to primates. This and previous studies reporting T. lewisi in humans suggest that this trypanosome can cause sporadic and opportunistic fleaborne infection in primates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Laboratory studies of host-seeking olfactory behaviour in sandflies have largely been restricted to the American visceral leishmaniasis vector Lutzomyia longipalpis. In comparison, almost nothing is known about the chemical ecology of related species, which transmit American cutaneous leishmaniasis (ACL), due in part to difficulties in raising these insects in the laboratory. Understanding how ACL vectors locate their hosts will be essential to developing new vector control strategies to combat this debilitating disease.Methods: This study examined host-odour seeking behaviour of the ACL vector Nyssomyia neivai (Pinto) (=Lutzomyia neivai) using a wind tunnel olfactometer. The primary aim was to determine whether field-collected female N. neivai would respond to host odours in the laboratory, thereby eliminating the need to maintain colonies of these insects for behavioural experiments. Responses to two key host odour components, 1-octen-3-ol and lactic acid, and a commercially-available mosquito lure (BG-Lure (TM)) were assessed and compared relative to an air control. We also tested whether trials could be conducted outside of the normal evening activity period of N. neivai without impacting on fly behaviour, and whether the same flies could be used to assess baseline responses to air without affecting responses to octenol, thereby reducing the number of flies required for experiments.Results: Octenol was found to both activate host-seeking behaviour and attract female N. neivai in the wind tunnel, while lactic acid elicited weaker responses of activation and attractiveness under identical conditions. The BG-Lure did not activate or attract N. neivai under test conditions. Further experiments showed that sandfly behaviour in the wind tunnel was not affected by time of day, such that experiments need not be restricted to nocturnal hours. Moreover, using the same flies to measure both baseline responses to air and attraction to test compounds did not affect odour-seeking behaviour.Conclusions: The results of this study demonstrate that N. neivai taken from the field are suitable for use in laboratory olfactometer experiments. It is hoped this work will facilitate further research into chemical ecology of this species, and other ACL vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In meiner Dissertation beschäftigte ich mich mit unterschiedlichen Verteidungsstrategien, derenrnEffektivität und Evolution, der Ameisenart Temnothorax longispinosus (“Sklaven”), gegenüberrneinem sozialen Parasiten - der nahverwandten, sklavenhaltenden Art Protomognathusrnamericanus (“Sklavenhalter”). Wir entdeckten eine neue Kategorie der Verteidigungsstrategie,rnwelche es dem Wirten ermöglicht, flexibel auf die nicht vorhersagbaren Angriffe des Parasitenrnzu reagieren. Darüber hinaus erforschten wir, wie die Wirte ihre kollektive Verteidigung an einernVielzahl unterschiedlicher Angreifer anpassen können. Wir konnten feststellen, dass Wirte in derrnLage sind ihre kollektive Verteidigung dem Grad der Bedrohung anzupassen. Dies weist daraufrnhin, dass Selektion die Verteidigung gegen unterschiedliche Typen von Angreifern voneinanderrnunabhängig beeinflussen könnte. In einer dritten Studie belegten wir experimentell, dass diernParasiten die Evolution der Kolonieaggressivität der Wirtsart direkt beeinflussen. Die letztenrnbeiden Publikationen beschäftigten sich mit Sklavenrebellion, einer rätselhaftenrnVerteidigungsstrategie, da noch unklar ist, wie eine Eigenschaft von nicht reproduzierendenrnIndividuen vererbt werden kann. In einer Metaanalyse konnten wir die weite Verbreitung undrnhohe Variabilität dieser Eigenschaft dokumentieren, und fanden Hinweise, dassrnVerwandtenselektion eine mögliche Erklärung für die Evolution dieses Merkmals darstellenrnkönnte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The diversification of organisms with a parasitic lifestyle is often tightly linked to the evolution of their host associations. If a tight host association exists, closely related species tend to attack closely related hosts; host associations are less stable if associations are determined by more plastic traits like parasitoid searching and oviposition behaviour. The pupal-parasitoids of the genus Ichneumon attack a variety of macrolepidopteran hosts.They are either monophagous or polyphagous, and therefore offer a promissing system to investigate the evolution of host associations. Ichneumon was previously divided into two groups based on general body shape; however, a stout shape has been suggested as an adaptation to buried host pupation sites, and might thus not represent a reliable phylogenetic character. Results: We here reconstruct the first molecular phylogeny of the genus Ichneumon using two mitochondrial (CO1 and NADH1) and one nuclear marker (28S). The resulting phylogeny only supports monophyly of Ichneumon when Ichneumon lugens Gravenhorst, 1829 (formerly in Chasmias, stat. rev.) and Ichneumon deliratorius Linnaeus, 1758 (formerly Coelichneumon) are included. Neither parasitoid species that attack hosts belonging to one family nor those attacking butterflies (Rhopalocera) form monophyletic clades. Ancestral state reconstructions suggest multiple transitions between searching for hosts above versus below ground and between a stout versus elongated body shape. A model assuming correlated evolution between the two characters was preferred over independent evolution of host-searching niche and body shape. Conclusions: Host relations, both in terms of phylogeny and ecology, evolved at a high pace in the genus Ichneumon. Numerous switches between hosts of different lepidopteran families have occurred, a pattern that seems to be the rule among idiobiont parasitoids. A stout body and antennal shape in the parasitoid female is confirmed as an ecological adaptation to host pupation sites below ground and has evolved convergently several times. Morphological characters that might be involved in adaptation to hosts should be avoided as diagnostic characters for phylogeny and classification, as they can be expected to show high levels of homoplasy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many insect herbivores feed on belowground plant tissues. In this chapter, we discuss how they have adapted to deal with root primary and secondary metabolites. It is becoming evident that root herbivores can use root volatiles and exudates for host location and foraging. Their complex sensory apparatus suggests a sophisticated recognition and signal transduction system. Furthermore, endogenous metabolites trigger attractive or repellent responses in root feeders, indicating that they may specifically fine-tune food uptake to meet their dietary needs. Little evidence for direct toxic effects of root secondary metabolites has accumulated so far, indicating high prevalence of tolerance mechanisms. Root herbivores furthermore facilitate the entry of soil microbes into the roots, which may influence root nutritional quality. Investigating the role of plant metabolites in an ecologically and physiologically relevant context will be crucial to refine our current models on root-herbivore physiology and behaviour in the future.