979 resultados para High resolution image
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.
Resumo:
ray micro-tomography is a well-established technique for non-invasive imaging and evaluation of heterogeneous materials. An inexpensive X-ray micro-tomography system has been designed and built for the specific purposes of examining root growth and root/soil interactions. The system uses a silver target X-ray source with a focal spot diameter of 80 mum, an X-ray image intensifier with a sampling aperture of about 100 mum, and a sample with a diameter of 25 mm. Pre-germinated wheat and rape seeds were grown for up to 8-10 days in plastic containers in a sandy loam soil sieved to < 250 μm, and imaged with the X-ray system at regular intervals. The quality of 3 D image obtained was good allowing the development and growth of both root axes and some first-order laterals to be observed. The satisfactory discrimination between soil and roots enabled measurements of root diameter (wheat values were 0.48-1.22 mm) in individual tomographic slices and, by tracking from slice to slice, root lengths were also measured. The measurements obtained were generally within 10% of those obtained from destructive samples measured manually and with a flat-bed scanner. Further developments of the system will allow more detailed examination of the root: soil interface.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
This paper presents a new method to calculate sky view factors (SVFs) from high resolution urban digital elevation models using a shadow casting algorithm. By utilizing weighted annuli to derive SVF from hemispherical images, the distance light source positions can be predefined and uniformly spread over the whole hemisphere, whereas another method applies a random set of light source positions with a cosine-weighted distribution of sun altitude angles. The 2 methods have similar results based on a large number of SVF images. However, when comparing variations at pixel level between an image generated using the new method presented in this paper with the image from the random method, anisotropic patterns occur. The absolute mean difference between the 2 methods is 0.002 ranging up to 0.040. The maximum difference can be as much as 0.122. Since SVF is a geometrically derived parameter, the anisotropic errors created by the random method must be considered as significant.
Resumo:
Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Resumo:
Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. In this study, a new postprocessing information fusion algorithm for the extraction and representation of land-use information based on high-resolution satellite imagery is presented. This approach can produce land-use maps with sharp interregional boundaries and homogeneous regions. The proposed approach is conducted in five steps. First, a GIS layer - ATKIS data - was used to generate two coarse homogeneous regions, i.e. urban and rural areas. Second, a thematic (class) map was generated by use of a hybrid spectral classifier combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier. Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting in a smoothed thematic map. Fourth, edge detection and edge thinning techniques were used to generate a contour map with pixel-width interclass boundaries. Fifth, the contour map was superimposed on the thematic map by use of a region-growing algorithm with the contour map and the smoothed thematic map as two constraints. For the operation of the proposed method, a software package is developed using programming language C. This software package comprises the GML algorithm, a probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast parallel thinning algorithm, and a region-growing information fusion algorithm. The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution IRS-1C imagery was used as the principal input data.