904 resultados para High repetition rate heat capacity master oscillator power amplifier system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"AEC Contract AT(04-3)-400."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and implementation of a low-voltage-stress Class-EF power amplifier (PA) with extended maximum operating frequency, named as ‘third-harmonic-peaking Class-EF PA’. A novel transmission-line load network is proposed to meet the Class-EF impedance requirements at the fundamental, all even harmonics, and third harmonic components. It also provides an impedance matching to a 50 Ω load. A more effective λ/8 open- and shorted-stub network is deployed at the drain of the transistor replacing the traditional λ/4 transmission line. Implemented using GaN HEMTs, the PA delivered 39.2 dBm output power with 80.5% drain efficiency and 71% PAE at 2.22 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High repetition rate passively mode-locked sources are of significant interest due to their potential for applications including optical clocking, optical sampling, communications and others. Due to their short excited state lifetimes mode-locked VECSELs are ideally suited to high repetition rate operation, however fundamentally mode-locked quantum well-based VECSELs have not achieved repetition rates above 10 GHz due to the limitations placed on the cavity geometry by the requirement that the saturable absorber saturates more quickly than the gain. This issue has been overcome by the use of quantum dot-based saturable absorbers with lower saturation fluences leading to repetition rates up to 50 GHz, but sub-picosecond pulses have not been achieved at these repetition rates. We present a passively harmonically mode-locked VECSEL emitting pulses of 265 fs duration at a repetition rate of 169 GHz with an output power of 20 mW. The laser is based around an antiresonant 6 quantum well gain sample and is mode-locked using a semiconductor saturable absorber mirror. Harmonic modelocking is achieved by using an intracavity sapphire etalon. The sapphire then acts as a coupled cavity, setting the repetition rate of the laser while still allowing a tight focus on the saturable absorber. RF spectra of the laser output show no peaks at harmonics of the fundamental repetition rate up to 26 GHz, indicating stable harmonic modelocking. Autocorrelations reveal groups of pulses circulating in the cavity as a result of an increased tendency towards Q-switched modelocking due to the low pulse energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

对高功率脉冲双包层光纤激光器的国内外研究进展进行评述,通过建立了小信号瞬态增益模型,对脉冲激光信号经过双包层光纤放大后的波形进行了数值模拟。分析了基于MOPA方式脉冲双包层光纤激光器的几个问题,报道了中科院上海光机所采用振荡-放大(MOPA)方法获得133.8W平均功率脉冲放大输出的实验结果。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 μm without pulse compression, external cavity, gain-or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays a huge attention of the academia and research teams is attracted to the potential of the usage of the 60 GHz frequency band in the wireless communications. The use of the 60GHz frequency band offers great possibilities for wide variety of applications that are yet to be implemented. These applications also imply huge implementation challenges. Such example is building a high data rate transceiver which at the same time would have very low power consumption. In this paper we present a prototype of Single Carrier -SC transceiver system, illustrating a brief overview of the baseband design, emphasizing the most important decisions that need to be done. A brief overview of the possible approaches when implementing the equalizer, as the most complex module in the SC transceiver, is also presented. The main focus of this paper is to suggest a parallel architecture for the receiver in a Single Carrier communication system. This would provide higher data rates that the communication system canachieve, for a price of higher power consumption. The suggested architecture of such receiver is illustrated in this paper,giving the results of its implementation in comparison with its corresponding serial implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eye-safety requirements in important applications like LIDAR or Free Space Optical Communications make specifically interesting the generation of high power, short optical pulses at 1.5 um. Moreover, high repetition rates allow reducing the error and/or the measurement time in applications involving pulsed time-of-flight measurements, as range finders, 3D scanners or traffic velocity controls. The Master Oscillator Power Amplifier (MOPA) architecture is an interesting source for these applications since large changes in output power can be obtained at GHz rates with a relatively small modulation of the current in the Master Oscillator (MO). We have recently demonstrated short optical pulses (100 ps) with high peak power (2.7 W) by gain switching the MO of a monolithically integrated 1.5 um MOPA. Although in an integrated MOPA the laser and the amplifier are ideally independent devices, compound cavity effects due to the residual reflectance at the different interfaces are often observed, leading to modal instabilities such as self-pulsations.