911 resultados para High dynamic range


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the ecological determinants of species’ distribution is a fundamental goal of ecology, and is increasingly important with changing limits to species’ range. Species often reach distributional limits on gradients of resource availability, but the extent to which offspring provisioning varies towards range limits is poorly understood. Selection is generally expected to favour higher provisioning of individual offspring in environments with short growing seasons and limited moisture, nutrients, or hosts for parasitism. However, individual provisioning may decline if parent size is limited by resources. This thesis focuses on three major questions: 1) does seed size vary over an elevational gradient? 2) does this variation respond adaptively towards the range limit? and 3) is potential elevational variation environmentally or genetically controlled? I tested variation in seed investment towards the upper elevational limit of the hemiparasitic annual herb Rhinanthus minor, sampled across an elevational range of 1,000m in the Rocky Mountains of Alberta, Canada. I also used a reciprocal transplant experiment to address the heritability of seed mass. Seed mass increased marginally towards higher elevations, while seed number and plant size declined. There was a strong elevational increase in seed mass scaled by overall plant size. Therefore, investment in individual seeds was higher towards the upper range edge, indicating potential adaptation of the reproductive strategy to allow for establishment in marginal environments. Genetic, environmental, and genotype-by-environment interactions were observed in transplanted populations, but the relative proportions of these effects on seed size were unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A power and resource efficient ‘dynamic-range utilisation’ technique to increase operational capacity of DSP IP cores by exploiting redundancy in the data epresentation of sampled analogue input data, is presented. By cleverly partitioning dynamic-range into separable processing threads, several data streams are computed concurrently on the same hardware. Unlike existing techniques which act solely to reduce power consumption due to sign extension, here the dynamic range is exploited to increase operational capacity while still achieving reduced power consumption. This extends an existing system-level, power efficient framework for the design of low power DSP IP cores, which when applied to the design of an FFT IP core in a digital receiver system gives an architecture requiring 50% fewer multipliers, 12% fewer slices and 51%-56% less power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure Fusion and other HDR techniques generate well-exposed images from a bracketed image sequence while reproducing a large dynamic range that far exceeds the dynamic range of a single exposure. Common to all these techniques is the problem that the smallest movements in the captured images generate artefacts (ghosting) that dramatically affect the quality of the final images. This limits the use of HDR and Exposure Fusion techniques because common scenes of interest are usually dynamic. We present a method that adapts Exposure Fusion, as well as standard HDR techniques, to allow for dynamic scene without introducing artefacts. Our method detects clusters of moving pixels within a bracketed exposure sequence with simple binary operations. We show that the proposed technique is able to deal with a large amount of movement in the scene and different movement configurations. The result is a ghost-free and highly detailed exposure fused image at a low computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.