894 resultados para Heterogeneous Cellular Automaton
Resumo:
Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.
Resumo:
Summary Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale. Résumé La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation. Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial. Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition. Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080. Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.
Resumo:
La biologie de la conservation est communément associée à la protection de petites populations menacées d?extinction. Pourtant, il peut également être nécessaire de soumettre à gestion des populations surabondantes ou susceptibles d?une trop grande expansion, dans le but de prévenir les effets néfastes de la surpopulation. Du fait des différences tant quantitatives que qualitatives entre protection des petites populations et contrôle des grandes, il est nécessaire de disposer de modèles et de méthodes distinctes. L?objectif de ce travail a été de développer des modèles prédictifs de la dynamique des grandes populations, ainsi que des logiciels permettant de calculer les paramètres de ces modèles et de tester des scénarios de gestion. Le cas du Bouquetin des Alpes (Capra ibex ibex) - en forte expansion en Suisse depuis sa réintroduction au début du XXème siècle - servit d?exemple. Cette tâche fut accomplie en trois étapes : En premier lieu, un modèle de dynamique locale, spécifique au Bouquetin, fut développé : le modèle sous-jacent - structuré en classes d?âge et de sexe - est basé sur une matrice de Leslie à laquelle ont été ajoutées la densité-dépendance, la stochasticité environnementale et la chasse de régulation. Ce modèle fut implémenté dans un logiciel d?aide à la gestion - nommé SIM-Ibex - permettant la maintenance de données de recensements, l?estimation automatisée des paramètres, ainsi que l?ajustement et la simulation de stratégies de régulation. Mais la dynamique d?une population est influencée non seulement par des facteurs démographiques, mais aussi par la dispersion et la colonisation de nouveaux espaces. Il est donc nécessaire de pouvoir modéliser tant la qualité de l?habitat que les obstacles à la dispersion. Une collection de logiciels - nommée Biomapper - fut donc développée. Son module central est basé sur l?Analyse Factorielle de la Niche Ecologique (ENFA) dont le principe est de calculer des facteurs de marginalité et de spécialisation de la niche écologique à partir de prédicteurs environnementaux et de données d?observation de l?espèce. Tous les modules de Biomapper sont liés aux Systèmes d?Information Géographiques (SIG) ; ils couvrent toutes les opérations d?importation des données, préparation des prédicteurs, ENFA et calcul de la carte de qualité d?habitat, validation et traitement des résultats ; un module permet également de cartographier les barrières et les corridors de dispersion. Le domaine d?application de l?ENFA fut exploré par le biais d?une distribution d?espèce virtuelle. La comparaison à une méthode couramment utilisée pour construire des cartes de qualité d?habitat, le Modèle Linéaire Généralisé (GLM), montra qu?elle était particulièrement adaptée pour les espèces cryptiques ou en cours d?expansion. Les informations sur la démographie et le paysage furent finalement fusionnées en un modèle global. Une approche basée sur un automate cellulaire fut choisie, tant pour satisfaire aux contraintes du réalisme de la modélisation du paysage qu?à celles imposées par les grandes populations : la zone d?étude est modélisée par un pavage de cellules hexagonales, chacune caractérisée par des propriétés - une capacité de soutien et six taux d?imperméabilité quantifiant les échanges entre cellules adjacentes - et une variable, la densité de la population. Cette dernière varie en fonction de la reproduction et de la survie locale, ainsi que de la dispersion, sous l?influence de la densité-dépendance et de la stochasticité. Un logiciel - nommé HexaSpace - fut développé pour accomplir deux fonctions : 1° Calibrer l?automate sur la base de modèles de dynamique (par ex. calculés par SIM-Ibex) et d?une carte de qualité d?habitat (par ex. calculée par Biomapper). 2° Faire tourner des simulations. Il permet d?étudier l?expansion d?une espèce envahisseuse dans un paysage complexe composé de zones de qualité diverses et comportant des obstacles à la dispersion. Ce modèle fut appliqué à l?histoire de la réintroduction du Bouquetin dans les Alpes bernoises (Suisse). SIM-Ibex est actuellement utilisé par les gestionnaires de la faune et par les inspecteurs du gouvernement pour préparer et contrôler les plans de tir. Biomapper a été appliqué à plusieurs espèces (tant végétales qu?animales) à travers le Monde. De même, même si HexaSpace fut initialement conçu pour des espèces animales terrestres, il pourrait aisément être étndu à la propagation de plantes ou à la dispersion d?animaux volants. Ces logiciels étant conçus pour, à partir de données brutes, construire un modèle réaliste complexe, et du fait qu?ils sont dotés d?une interface d?utilisation intuitive, ils sont susceptibles de nombreuses applications en biologie de la conservation. En outre, ces approches peuvent également s?appliquer à des questions théoriques dans les domaines de l?écologie des populations et du paysage.<br/><br/>Conservation biology is commonly associated to small and endangered population protection. Nevertheless, large or potentially large populations may also need human management to prevent negative effects of overpopulation. As there are both qualitative and quantitative differences between small population protection and large population controlling, distinct methods and models are needed. The aim of this work was to develop theoretical models to predict large population dynamics, as well as computer tools to assess the parameters of these models and to test management scenarios. The alpine Ibex (Capra ibex ibex) - which experienced a spectacular increase since its reintroduction in Switzerland at the beginning of the 20th century - was used as paradigm species. This task was achieved in three steps: A local population dynamics model was first developed specifically for Ibex: the underlying age- and sex-structured model is based on a Leslie matrix approach with addition of density-dependence, environmental stochasticity and culling. This model was implemented into a management-support software - named SIM-Ibex - allowing census data maintenance, parameter automated assessment and culling strategies tuning and simulating. However population dynamics is driven not only by demographic factors, but also by dispersal and colonisation of new areas. Habitat suitability and obstacles modelling had therefore to be addressed. Thus, a software package - named Biomapper - was developed. Its central module is based on the Ecological Niche Factor Analysis (ENFA) whose principle is to compute niche marginality and specialisation factors from a set of environmental predictors and species presence data. All Biomapper modules are linked to Geographic Information Systems (GIS); they cover all operations of data importation, predictor preparation, ENFA and habitat suitability map computation, results validation and further processing; a module also allows mapping of dispersal barriers and corridors. ENFA application domain was then explored by means of a simulated species distribution. It was compared to a common habitat suitability assessing method, the Generalised Linear Model (GLM), and was proven better suited for spreading or cryptic species. Demography and landscape informations were finally merged into a global model. To cope with landscape realism and technical constraints of large population modelling, a cellular automaton approach was chosen: the study area is modelled by a lattice of hexagonal cells, each one characterised by a few fixed properties - a carrying capacity and six impermeability rates quantifying exchanges between adjacent cells - and one variable, population density. The later varies according to local reproduction/survival and dispersal dynamics, modified by density-dependence and stochasticity. A software - named HexaSpace - was developed, which achieves two functions: 1° Calibrating the automaton on the base of local population dynamics models (e.g., computed by SIM-Ibex) and a habitat suitability map (e.g. computed by Biomapper). 2° Running simulations. It allows studying the spreading of an invading species across a complex landscape made of variously suitable areas and dispersal barriers. This model was applied to the history of Ibex reintroduction in Bernese Alps (Switzerland). SIM-Ibex is now used by governmental wildlife managers to prepare and verify culling plans. Biomapper has been applied to several species (both plants and animals) all around the World. In the same way, whilst HexaSpace was originally designed for terrestrial animal species, it could be easily extended to model plant propagation or flying animals dispersal. As these softwares were designed to proceed from low-level data to build a complex realistic model and as they benefit from an intuitive user-interface, they may have many conservation applications. Moreover, theoretical questions in the fields of population and landscape ecology might also be addressed by these approaches.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study by numerical simulations the time correlation function of a stochastic lattice model describing the dynamics of coexistence of two interacting biological species that present time cycles in the number of species individuals. Its asymptotic behavior is shown to decrease in time as a sinusoidal exponential function from which we extract the dominant eigenvalue of the evolution operator related to the stochastic dynamics showing that it is complex with the imaginary part being the frequency of the population cycles. The transition from the oscillatory to the nonoscillatory behavior occurs when the asymptotic behavior of the time correlation function becomes a pure exponential, that is, when the real part of the complex eigenvalue equals a real eigenvalue. We also show that the amplitude of the undamped oscillations increases with the square root of the area of the habitat as ordinary random fluctuations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)
Resumo:
In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study the firing rate properties of a cellular automaton model for a neuronal network with chemical synapses. We propose a simple mechanism in which the nonlocal connections are included, through electrical and chemical synapses. In the latter case, we introduce a time delay which produces self-sustained activity. Nonlocal connections, or shortcuts, are randomly introduced according to a specified connection probability. There is a range of connection probabilities for which neuron firing occurs, as well as a critical probability for which the firing ceases in the absence of time delay. The critical probability for nonlocal shortcuts depends on the network size according to a power-law. We also compute the firing rate amplification factor by varying both the connection probability and the time delay for different network sizes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfven Bresillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high mHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. (C) 2011 Published by Elsevier B.V.
Resumo:
A thermodynamic approach is presented to model devices manufactured with cellular polymers. They are heterogeneous nonpolar space-charge electrets that exhibit much higher piezoelectricity than the well-known ferroelectric polymers. Their pyroelectric and piezoelectric properties are characterized by adequate coefficients which quantify the performance of devices manufactured with those materials. The method presented in this contribution to calculate those coefficients is exact and consistent avoiding ad hoc simplifications introduced in other approaches. The results obtained by this method allow drawing conclusions regarding device optimization.
Resumo:
In general, modern networks are analysed by taking several Key Performance Indicators (KPIs) into account, their proper balance being required in order to guarantee a desired Quality of Service (QoS), particularly, cellular wireless heterogeneous networks. A model to integrate a set of KPIs into a single one is presented, by using a Cost Function that includes these KPIs, providing for each network node a single evaluation parameter as output, and reflecting network conditions and common radio resource management strategies performance. The proposed model enables the implementation of different network management policies, by manipulating KPIs according to users' or operators' perspectives, allowing for a better QoS. Results show that different policies can in fact be established, with a different impact on the network, e.g., with median values ranging by a factor higher than two.
Resumo:
Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.