121 resultados para Hermitian Yang–Mills instantons
Resumo:
We describe a new exact relation for large N(c) QCD for the long-distance behavior of baryon form factors in the chiral limit. This model-independent relation is used to test the consistency of the structure of several baryon models. All 4D semiclassical chiral soliton models satisfy the relation, as does the Pomarol-Wulzer holographic model of baryons as 5D Skyrmions. However, remarkably, we find that the holographic model treating baryons as instantons in the Sakai-Sugimoto model does not satisfy the relation.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.
Resumo:
The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.
Resumo:
For a pair of non-Hermitian Hamiltonian H and its Hermitian adjoint H(dagger), there are situations in which their eigenfunctions form a biorthogonal system. We illustrate such a situation by means of a one-particle system with a one-dimensional point interaction in the form of the Fermi pseudo-potential. The interaction consists of three terms with three strength parameters g(i) (i = 1, 2 and 3), which are all complex. This complex point interaction is neither Hermitian nor PT-invariant in general. The S-matrix for the transmission reflection problem constructed with H (or with H(dagger)) in the usual manner is not unitary, but it conforms to the pseudo-unitarity that we define. The pseudounitarity is closely related to the biorthogonality of the eigenfunctions. The eigenvalue spectrum of H with the complex interaction is generally complex but there are cases where the spectrum is real. In such a case H and H(dagger) form a pseudo-Hermitian pair.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
The strange quark matter hypothesis is one of the most exciting speculations of the XX Century Physics. If this hypothesis is correct, the ground state of the matter would be the strange matter, which could form the core of compact objects like neutron stars or even more exotic objects like quarks stars. Due to the high-density and low-temperature regime in these stars, the interaction between quarks through gluon exchange could favor the appearance of a color superconducting state, significantl modifying the equation of state of the system. In this paper we present a general overview of this Subject, taking also into account the effect of strong magnetic field in the quark stars.
Resumo:
There exist striking analogies in the behaviour of eigenvalues of Hermitian compact operators, singular values of compact operators and invariant factors of homomorphisms of modules over principal ideal domains, namely diagonalization theorems, interlacing inequalities and Courant-Fischer type formulae. Carlson and Sa [D. Carlson and E.M. Sa, Generalized minimax and interlacing inequalities, Linear Multilinear Algebra 15 (1984) pp. 77-103.] introduced an abstract structure, the s-space, where they proved unified versions of these theorems in the finite-dimensional case. We show that this unification can be done using modular lattices with Goldie dimension, which have a natural structure of s-space in the finite-dimensional case, and extend the unification to the countable-dimensional case.
Resumo:
Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic chi(2) analysis in a wide class of schemes, considering arbitrary Hermitian charged-lepton mass matrices and symmetric mass matrices for Majorana neutrinos or Hermitian mass matrices for Dirac neutrinos. Our study reveals that several patterns are still consistent with all the observations at the 68.27% confidence level, while some others are disfavored or excluded by the experimental data. The well-known Frampton-Glashow-Marfatia two-zero textures, hybrid textures, and parallel structures (among others) are considered.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
We discuss the relation between spacetime diffeomorphisms and gauge transformations in theories of the YangMills type coupled with Einsteins general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure YangMills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the spacetime metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer. 2000 American Institute of Physics.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.