970 resultados para Heparan Sulfate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To characterize the vitreous intrinsic proteoglycans, investigate their dynamics, and examine their role in the supramolecular organization of the vitreous. Methods: Vitreous from normal rabbits was collected and processed for observation with the transmission electron microscope after treatment with glycosidases. Also, rabbits were injected intravitreally with [S-35]-sodium sulfate and sacrificed at several time intervals after the injection. Proteoglycans (PGs) were assayed in the vitreous supernatant or in whole samples extracted with guanidine hydrochloride by polyacrylamide or agarose gel electrophoresis, followed respectively by fluorography or autoradiography, and ion-exchange chromatography and gel-filtration chromatography, combined with glycolytic treatment of the samples. The sulfated glycosaminoglycans (GAGs) were characterized by agarose gel electrophoresis after treating vitreous samples with protease and specific glycosidases. Results: the electron microscopic study revealed a network with hyaluronic acid ( HA) as thin threads coating and connecting collagen fibrils. The elimination of the HA coat showed chondroitin sulfate granules (8-25 nm) arranged at regular intervals on the fibril surface. The chondroitinase ABC digestion, besides removing the granules, also caused the formation of thicker bundles of the collagen fibrils. The PG and GAG analysis indicated that there are three renewable PGs in the vitreous ( e. g., one heparan-and two chondroitin-sulfate ones). Conclusions: At least one of the chondroitin sulfate PGs is involved in the interactions that occur in the vitreous structure, mainly by providing adequate spacing between the collagen fibrils, a condition that is probably required for the transparency of the vitreous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK1/2, noticeably influence ischemia/reperfusion injury (IRI). The complement inhibitor dextran sulfate (DXS) associates with damaged endothelium denudated of its heparan sulfate proteoglycan (HSPG) layer. Other glycosaminoglycan analogs are known to influence MAPK signaling. Hypothetically therefore, targeted intravascular cytoprotection by DXS may function in part through influencing MAPK activation to reduce IRI-induced damage of the vasculature. METHODS: IRI of the infrarenal aorta of male Wistar rats was induced by 90 minutes clamping followed by 120 minutes reperfusion. DXS (5 mg/mL) or physiologic saline (NaCl controls) was infused locally into the ischemic aortic segment immediately prior to reperfusion. Ninety minutes ischemia-only and heparinase infusion (maximal damage) experiments, as well as native rat aorta, served as controls. Aortas were excised following termination of the experiments for further analysis. RESULTS: DXS significantly inhibited IRI-induced JNK and ERK1/2 activation (P = .043; P =.005) without influencing the p38 pathway (P =.110). Reduced aortic injury, with significant inhibition of apoptosis (P = .032 for DXS vs NaCl), correlated with decreased nuclear factor kappaB translocation within the aortic wall. DXS treatment clearly reduced C1q, C4b/c, C3b/c, and C9 complement deposition, whilst preserving endothelial cell integrity and reducing reperfusion-induced HSPG shedding. Protection was associated with binding of fluorescein labeled DXS to ischemically damaged tissue. CONCLUSIONS: Local application of DXS into ischemic vasculature immediately prior to reperfusion reduces complement deposition and preserves endothelial integrity, partially through modulating activation of MAPKs and may offer a new approach to tackle IRI in vascular surgical procedures. CLINICAL RELEVANCE: The purpose of the present study was to determine the role of dextran sulfate (DXS), a glycosaminoglycan analog and complement inhibitor, in modulating intracellular MAPK signaling pathways, reducing complement activation and ultimately attenuating ischemia/reperfusion injury (IRI) in a rat aortic-clamping model, in part a surrogate model to study the microvasculature. The study shows a role for DXS in ameliorating endothelial injury by reducing IRI-mediated damage and intravascular, local inflammation in the affected aortic segment. DXS may be envisaged as an endothelial protectant in vascular injury, such as occurs during vascular surgical procedures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heparin- and heparan sulfate-like glycosaminoglycans (HLGAGs) represent an important class of molecules that interact with and modulate the activity of growth factors, enzymes, and morphogens. Of the many biological functions for this class of molecules, one of its most important functions is its interaction with antithrombin III (AT-III). AT-III binding to a specific heparin pentasaccharide sequence, containing an unusual 3-O sulfate on a N-sulfated, 6-O sulfated glucosamine, increases 1,000-fold AT-III's ability to inhibit specific proteases in the coagulation cascade. In this manner, HLGAGs play an important biological and pharmacological role in the modulation of blood clotting. Recently, a sequencing methodology was developed to further structure-function relationships of this important class of molecules. This methodology combines a property-encoded nomenclature scheme to handle the large information content (properties) of HLGAGs, with matrix-assisted laser desorption ionization MS and enzymatic and chemical degradation as experimental constraints to rapidly sequence picomole quantities of HLGAG oligosaccharides. Using the above property-encoded nomenclature-matrix-assisted laser desorption ionization approach, we found that the sequence of the decasaccharide used in this study is ΔU2SHNS,6SI2SHNS,6SI2SHNS,6SIHNAc,6SGHNS,3S,6S (±DDD4–7). We confirmed our results by using integral glycan sequencing and one-dimensional proton NMR. Furthermore, we show that this approach is flexible and is able to derive sequence information on an oligosaccharide mixture. Thus, this methodology will make possible both the analysis of other unusual sequences in HLGAGs with important biological activity as well as provide the basis for the structural analysis of these pharamacologically important group of heparin/heparan sulfates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La possibilité de programmer une cellule dans le but de produire une protéine d’intérêt est apparue au début des années 1970 avec l’essor du génie génétique. Environ dix années plus tard, l’insuline issue de la plateforme de production microbienne Escherichia coli, fut la première protéine recombinante (r-protéine) humaine commercialisée. Les défis associés à la production de r-protéines plus complexes et glycosylées ont amené l’industrie biopharmaceutique à développer des systèmes d’expression en cellules de mammifères. Ces derniers permettent d’obtenir des protéines humaines correctement repliées et de ce fait, biologiquement actives. Afin de transférer le gène d’intérêt dans les cellules de mammifères, le polyéthylènimine (PEI) est certainement un des vecteurs synthétiques le plus utilisé en raison de son efficacité, mais aussi sa simplicité d’élaboration, son faible coût et sa stabilité en solution qui facilite son utilisation. Il est donc largement employé dans le contexte de la production de r-protéines à grande échelle et fait l’objet d’intenses recherches dans le domaine de la thérapie génique non virale. Le PEI est capable de condenser efficacement l’ADN plasmidique (vecteur d’expression contenant le gène d’intérêt) pour former des complexes de petites tailles appelés polyplexes. Ces derniers doivent contourner plusieurs étapes limitantes afin de délivrer le gène d’intérêt au noyau de la cellule hôte. Dans les conditions optimales du transfert de gène par le PEI, les polyplexes arborent une charge positive nette interagissant de manière électrostatique avec les protéoglycanes à héparane sulfate (HSPG) qui décorent la surface cellulaire. On observe deux familles d’HSPG exprimés en abondance à la surface des cellules de mammifères : les syndécanes (4 membres, SDC1-4) et les glypicanes (6 membres, GPC1-6). Si l’implication des HSPG dans l’attachement cellulaire des polyplexes est aujourd’hui largement acceptée, leur rôle individuel vis-à-vis de cet attachement et des étapes subséquentes du transfert de gène reste à confirmer. Après avoir optimisées les conditions de transfection des cellules de mammifères CHO et HEK293 dans le but de produire des r-protéines secrétées, nous avons entrepris des cinétiques de capture, d’internalisation des polyplexes et aussi d’expression du transgène afin de mieux comprendre le processus de transfert de gène. Nous avons pu observer des différences au niveau de ces paramètres de transfection dépendamment du système d’expression et des caractéristiques structurelles du PEI utilisé. Ces résultats présentés sous forme d’articles scientifiques constituent une base solide de l’enchaînement dans le temps des évènements essentiels à une transfection efficace des cellules CHO et HEK293 par le PEI. Chaque type cellulaire possède un profil d’expression des HSPG qui lui est propre, ces derniers étant plus ou moins permissifs au transfert de gène. En effet, une étude menée dans notre laboratoire montre que les SDC1 et SDC2 ont des rôles opposés vis-à-vis du transfert de gène. Alors que tous deux sont capables de lier les polyplexes, l’expression de SDC1 permet leur internalisation contrairement à l’expression de SDC2 qui l’inhibe. De plus, lorsque le SDC1 est exprimé à la surface des cellules HEK293, l’efficacité de transfection est augmentée de douze pourcents. En utilisant la capacité de SDC1 à induire l’internalisation des polyplexes, nous avons étudié le trafic intracellulaire des complexes SDC1 / polyplexes dans les cellules HEK293. De plus, nos observations suggèrent une nouvelle voie par laquelle les polyplexes pourraient atteindre efficacement le noyau cellulaire. Dans le contexte du transfert de gène, les HSPG sont essentiellement étudiés dans leur globalité. S’il est vrai que le rôle des syndécanes dans ce contexte est le sujet de quelques études, celui des glypicanes est inexploré. Grâce à une série de traitements chimiques et enzymatiques visant une approche « perte de fonction », l’importance de la sulfatation comme modification post-traductionnelle, l’effet des chaînes d’héparanes sulfates mais aussi des glypicanes sur l’attachement, l’internalisation des polyplexes, et l’expression du transgène ont été étudiés dans les cellules CHO et HEK293. L’ensemble de nos observations indique clairement que le rôle des HSPG dans le transfert de gène devrait être investigué individuellement plutôt que collectivement. En effet, le rôle spécifique de chaque membre des HSPG sur la capture des polyplexes et leur permissivité à l’expression génique demeure encore inconnu. En exprimant de manière transitoire chaque membre des syndécanes et glypicanes à la surface des cellules CHO, nous avons déterminé leur effet inhibiteur ou activateur sur la capture des polyplexes sans pouvoir conclure quant à l’effet de cette surexpression sur l’efficacité de transfection. Par contre, lorsqu’ils sont présents dans le milieu de culture, le domaine extracellulaire des HSPG réduit l’efficacité de transfection des cellules CHO sans induire la dissociation des polyplexes. Curieusement, lorsque chaque HSPG est exprimé de manière stable dans les cellules CHO, seulement une légère modulation de l’expression du transgène a pu être observée. Ces travaux ont contribué à la compréhension des mécanismes d'action du vecteur polycationique polyéthylènimine et à préciser le rôle des protéoglycanes à héparane sulfate dans le transfert de gène des cellules CHO et HEK293.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La possibilité de programmer une cellule dans le but de produire une protéine d’intérêt est apparue au début des années 1970 avec l’essor du génie génétique. Environ dix années plus tard, l’insuline issue de la plateforme de production microbienne Escherichia coli, fut la première protéine recombinante (r-protéine) humaine commercialisée. Les défis associés à la production de r-protéines plus complexes et glycosylées ont amené l’industrie biopharmaceutique à développer des systèmes d’expression en cellules de mammifères. Ces derniers permettent d’obtenir des protéines humaines correctement repliées et de ce fait, biologiquement actives. Afin de transférer le gène d’intérêt dans les cellules de mammifères, le polyéthylènimine (PEI) est certainement un des vecteurs synthétiques le plus utilisé en raison de son efficacité, mais aussi sa simplicité d’élaboration, son faible coût et sa stabilité en solution qui facilite son utilisation. Il est donc largement employé dans le contexte de la production de r-protéines à grande échelle et fait l’objet d’intenses recherches dans le domaine de la thérapie génique non virale. Le PEI est capable de condenser efficacement l’ADN plasmidique (vecteur d’expression contenant le gène d’intérêt) pour former des complexes de petites tailles appelés polyplexes. Ces derniers doivent contourner plusieurs étapes limitantes afin de délivrer le gène d’intérêt au noyau de la cellule hôte. Dans les conditions optimales du transfert de gène par le PEI, les polyplexes arborent une charge positive nette interagissant de manière électrostatique avec les protéoglycanes à héparane sulfate (HSPG) qui décorent la surface cellulaire. On observe deux familles d’HSPG exprimés en abondance à la surface des cellules de mammifères : les syndécanes (4 membres, SDC1-4) et les glypicanes (6 membres, GPC1-6). Si l’implication des HSPG dans l’attachement cellulaire des polyplexes est aujourd’hui largement acceptée, leur rôle individuel vis-à-vis de cet attachement et des étapes subséquentes du transfert de gène reste à confirmer. Après avoir optimisées les conditions de transfection des cellules de mammifères CHO et HEK293 dans le but de produire des r-protéines secrétées, nous avons entrepris des cinétiques de capture, d’internalisation des polyplexes et aussi d’expression du transgène afin de mieux comprendre le processus de transfert de gène. Nous avons pu observer des différences au niveau de ces paramètres de transfection dépendamment du système d’expression et des caractéristiques structurelles du PEI utilisé. Ces résultats présentés sous forme d’articles scientifiques constituent une base solide de l’enchaînement dans le temps des évènements essentiels à une transfection efficace des cellules CHO et HEK293 par le PEI. Chaque type cellulaire possède un profil d’expression des HSPG qui lui est propre, ces derniers étant plus ou moins permissifs au transfert de gène. En effet, une étude menée dans notre laboratoire montre que les SDC1 et SDC2 ont des rôles opposés vis-à-vis du transfert de gène. Alors que tous deux sont capables de lier les polyplexes, l’expression de SDC1 permet leur internalisation contrairement à l’expression de SDC2 qui l’inhibe. De plus, lorsque le SDC1 est exprimé à la surface des cellules HEK293, l’efficacité de transfection est augmentée de douze pourcents. En utilisant la capacité de SDC1 à induire l’internalisation des polyplexes, nous avons étudié le trafic intracellulaire des complexes SDC1 / polyplexes dans les cellules HEK293. De plus, nos observations suggèrent une nouvelle voie par laquelle les polyplexes pourraient atteindre efficacement le noyau cellulaire. Dans le contexte du transfert de gène, les HSPG sont essentiellement étudiés dans leur globalité. S’il est vrai que le rôle des syndécanes dans ce contexte est le sujet de quelques études, celui des glypicanes est inexploré. Grâce à une série de traitements chimiques et enzymatiques visant une approche « perte de fonction », l’importance de la sulfatation comme modification post-traductionnelle, l’effet des chaînes d’héparanes sulfates mais aussi des glypicanes sur l’attachement, l’internalisation des polyplexes, et l’expression du transgène ont été étudiés dans les cellules CHO et HEK293. L’ensemble de nos observations indique clairement que le rôle des HSPG dans le transfert de gène devrait être investigué individuellement plutôt que collectivement. En effet, le rôle spécifique de chaque membre des HSPG sur la capture des polyplexes et leur permissivité à l’expression génique demeure encore inconnu. En exprimant de manière transitoire chaque membre des syndécanes et glypicanes à la surface des cellules CHO, nous avons déterminé leur effet inhibiteur ou activateur sur la capture des polyplexes sans pouvoir conclure quant à l’effet de cette surexpression sur l’efficacité de transfection. Par contre, lorsqu’ils sont présents dans le milieu de culture, le domaine extracellulaire des HSPG réduit l’efficacité de transfection des cellules CHO sans induire la dissociation des polyplexes. Curieusement, lorsque chaque HSPG est exprimé de manière stable dans les cellules CHO, seulement une légère modulation de l’expression du transgène a pu être observée. Ces travaux ont contribué à la compréhension des mécanismes d'action du vecteur polycationique polyéthylènimine et à préciser le rôle des protéoglycanes à héparane sulfate dans le transfert de gène des cellules CHO et HEK293.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to effect permanent closure in burns patients suffering from full thickness wounds, replacing their skin via split thickness autografting, is essential. Dermal substitutes in conjunction with widely meshed split thickness autografts (+/- cultured keratinocytes) reduce scarring at the donor and recipient sites of burns patients by reducing demand for autologous skin (both surface area and thickness), without compromising dermal delivery at the wound face. Tissue engineered products such as Integra consist of a dermal template which is rapidly remodelled to form a neodermis, at which time the temporary silicone outer layer is removed and replaced with autologous split thickness skin. Whilst provision of a thick tissue engineered dermis at full thickness burn sites reduces scarring, it is hampered by delays in vascularisation which results in clinical failure. The ultimate success of any skin graft product is dependent upon a number of basic factors including adherence, haemostasis and in the case of viable tissue grafts, success is ultimately dependent upon restoration of a normal blood supply, and hence this study. Ultimately, the goal of this research is to improve the therapeutic properties of tissue replacements, through impregnation with growth factors aimed at stimulating migration and proliferation of microvascular endothelial cells into the donor tissue post grafting. For the purpose of my masters, the aim was to evaluate the responsiveness of a dermal microvascular endothelial cell line to growth factors and haemostatic factors, in the presence of the glycoprotein vitronectin. Vitronectin formed the backbone for my hypothesis and research due to its association with both epithelial and, more specifically, endothelial migration and proliferation. Early work using a platform technology referred to as VitroGro (Tissue Therapies Ltd), which is comprised of vitronectin bound BP5/IGF-1, aided keratinocyte proliferation. I hypothesised that this result would translate to another epithelium - endothelium. VitroGro had no effect on endothelial proliferation or migration. Vitronectin increases the presence of Fibroblast Growth Factor (FGF) and Vascular Endothelial Growth Factor (VEGF) receptors, enhancing cell responsiveness to their respective ligands. So, although Human Microvascular Endothelial Cell line 1 (HMEC-1) VEGF receptor expression is generally low, it was hypothesised that exposure to vitronectin would up-regulate this receptor. HMEC-1 migration, but not proliferation, was enhanced by vitronectin bound VEGF, as well as vitronectin bound Epidermal Growth Factor (EGF), both of which could be used to stimulate microvascular endothelial cell migration for the purpose of transplantation. In addition to vitronectin's synergy with various growth factors, it has also been shown to play a role in haemostasis. Vitronectin binds thrombin-antithrombin III (TAT) to form a trimeric complex that takes on many of the attributes of vitronectin, such as heparin affinity, which results in its adherence to endothelium via heparan sulfate proteoglycans (HSP), followed by unaltered transcytosis through the endothelium, and ultimately its removal from the circulation. This has been documented as a mechanism designed to remove thrombin from the circulation. Equally, it could be argued that it is a mechanism for delivering vitronectin to the matrix. My results show that matrix-bound vitronectin dramatically alters the effect that conformationally altered antithrombin three (cATIII) has on proliferation of microvascular endothelial cells. cATIII stimulates HMEC-1 proliferation in the presence of matrix-bound vitronectin, as opposed to inhibiting proliferation in its absence. Binding vitronectin to tissues and organs prior to transplant, in the presence of cATIII, will have a profound effect on microvascular infiltration of the graft, by preventing occlusion of existing vessels whilst stimulating migration and proliferation of endothelium within the tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new strategy has emerged to improve healing of bone defects using exogenous glycosaminoglycans by increasing the effectiveness of bone-anabolic growth factors. Wnt ligands play an important role in bone formation. However, their functional interactions with heparan sulfate/heparin have only been investigated in non-osseous tissues. Our study now shows that the osteogenic activity of Wnt3a is cooperatively stimulated through physical interactions with exogenous heparin. N-Sulfation and to a lesser extent O-sulfation of heparin contribute to the physical binding and optimal co-stimulation of Wnt3a. Wnt3a-heparin signaling synergistically increases osteoblast differentiation with minimal effects on cell proliferation. Thus, heparin selectively reduces the effective dose of Wnt3a needed to elicit osteogenic, but not mitogenic responses. Mechanistically, Wnt3a-heparin signaling strongly activates the phosphoinositide 3-kinase/Akt pathway and requires the bone-related transcription factor RUNX2 to stimulate alkaline phosphatase activity, which parallels canonical beta-catenin signaling. Collectively, our findings establish the osteo-inductive potential of a heparin-mediated Wnt3a-phosphoinositide 3-kinase/Akt-RUNX2 signaling network and suggest that heparan sulfate supplementation may selectively reduce the therapeutic doses of peptide factors required to promote bone formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans (HSPGs) are complex and labile macromolecular moieties on the surfaces of cells that control the activities of a range of extracellular proteins, particularly those driving growth and regeneration. Here, we examine the biosynthesis of heparan sulfate (HS) sugars produced by cultured MC3T3-E1 mouse calvarial pre-osteoblast cells in order to explore the idea that changes in HS activity in turn drive phenotypic development during osteogenesis. Cells grown for 5 days under proliferating conditions were compared to cells grown for 20 days under mineralizing conditions with respect to their phenotype, the forms of HS core protein produced, and their HS sulfotransferase biosynthetic enzyme levels. RQ-PCR data was supported by the results from the purification of day 5 and day 20 HS forms by anionic exchange chromatography. The data show that cells in active growth phases produce more complex forms of sugar than cells that have become relatively quiescent during active mineralization, and that these in turn can differentially influence rates of cell growth when added exogenously back to preosteoblasts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.