984 resultados para Heart-weight
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The role of growth hormone (GH) in cardiac remodelling and function in chronic and persistent pressure overload-induced left ventricular hypertrophy has not been defined. The aim of the present study was to assess short-term GH treatment on left ventricular function and remodelling in rats with chronic pressure overload-induced hypertrophy.2. Twenty-six weeks after induction of ascending aortic stenosis (AAS), rats were treated with daily subcutaneous injections of recombinant human GH (1 mg/kg per day; AAS-GH group) or saline (AAS-P group) for 14 days. Sham-operated animals served as controls. Left ventricular function was assessed by echocardiography before and after GH treatment. Myocardial fibrosis was evaluated by histological analysis.3. Before GH treatment, AAS rats presented similar left ventricular function and structure. Treatment of rats with GH after the AAS procedure did not change bodyweight or heart weight, both of which were higher in the AAS groups than in the controls. After GH treatment, posterior wall shortening velocity (PWSV) was lower in the AAS-P group than in the control group. However, in the AAS-GH group, PWSV was between that in the control and AAS-P groups and did not differ significantly from either group. Fractional collagen (% of total area) was significantly higher in the AAS-P and AAS-GH groups compared with control (10.34 +/- 1.29, 4.44 +/- 1.37 and 1.88 +/- 0.88%, respectively; P < 0.05) and was higher still in the AAS-P group compared with the AAS-GH group.4. The present study has shown that short-term administration of GH to rats with chronic pressure overload-induced left ventricular hypertrophy induces cardioprotection by attenuating myocardial fibrosis.
Resumo:
Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, Which received BHT i.p. twice a week (1500 mg/kg body Weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac Muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research. (c) 2005 Elsevier GrnbH. All rights reserved.
Swimming training exacerbates pathological cardiac hypertrophy in kinin B(2) receptor-deficient mice
Resumo:
Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B(2) receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B(2) receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B(2)(-/-) mice. In addition, sedentary B(2)(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B(2)(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B(2)(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B(2) receptor in physiological cardiac hypertrophy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
There still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) underwent ascending aorta stenosis for 8 weeks (group AAS, n=9). LV performance was assessed by transthoracic echocardiography under light anesthesia. Myocardial function was studied in isolated papillary muscle preparation during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, n=9). LV weight-to-body weight ratio (C: 2.0 ± 0.5 mg/g; AAS: 3.3 ± 0.7 mg/g), LV relative wall thickness (C: 0.19 ± 0.02; AAS; 0.34 ± 0.10), and LV fractional shortening (C: 54 ± 5%; AAS: 70 ± 8%) were increased in the group AAS (p<0.05). Echocardiographic analysis also indicated a significant association (r=0.74; p<0.001) between percent fractional shortening and LV relative wall thickness. The performance of AAS isolated muscle revealed that active tension (C: 6.6 ± 1.7 g/mm 2; AAS: 6.5 ± 1.5 g/mm 2) and maximum rate of tension development (C: 69 ± 21 g/mm 2/s; AAS: 69 ± 18 g/mm 2) were not significantly different from group C (p>0.05). In conclusion: 1) Compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance; 2) The improved LV function might be due to the ventricular remodeling characterized by an increased relative wall thickness. Copyright © 2002 By PJD Publications Limited.
Resumo:
Associations between four microsatellite markers on chromosome 11 and five on chromosome 13 with performance, carcass and organs traits were investigated in chickens using a least-squares approach applied to single-marker analysis. Three hundred and twenty seven F 2 chickens from the EMBRAPA broiler×layer experimental population were evaluated for 16 traits: five related to performance, five to carcass and five to organs, plus the hematocrit. Two significance thresholds were considered: p<0.05 and p<0.0056; the last value resulted from the application of a multiple tests analyses correction. On chromosome 11, six associations (p<0.05) between the genotypes of two markers with four growth related and one carcass trait were found. On chromosome 13, six associations (p<0.05) between marker genotypes and three performance traits, eight associations (p<0.05) between marker genotypes and two carcass traits and eight associations (p<0.05) between marker genotypes and four organs traits were detected. These associations were indications of the presence of quantitative trait loci on these chromosomes, especially on chromosome 13. In this chromosome, the strongest evidence was for body weight at 41 days of age and percentage of carcass because the p-values exceeded the multiple test threshold (p<0.0056), but also for breast percentage and heart weight due to the large number of markers (four) on chromosome 13 associated with each one of these traits. These associations should be further investigated by interval mapping analyses to find QTL positions and to allow the estimation of their effects. © Asian Network for Scientific Information, 2009.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rapid growth in broilers is associated with susceptibility to metabolic disorders such as pulmonary hypertension syndrome (ascites) and sudden death. This study describes a genome search for QTL associated with relative weight of cardio respiratory and metabolically important organs (heart, lungs, liver and gizzard), and hematocrit value in a Brazilian broiler-layer cross. QTL with similar or different effects across sexes were investigated. At 42 days of age after fasted for 6 h, the F2 chickens were weighed and slaughtered. Weights and percentages of the weight relative to BW42 of gizzard, heart, lungs, liver and hematocrit were used in the QTL search. Parental, F1 and F2 individuals were genotyped with 128 genetic markers (127 microsatellites and 1 SNP) covering 22 linkage groups. QTL mapping analyses were carried out using mixed models. A total of 11 genome-wide significant QTL and five suggestive linkages were mapped. Thus, genome-wide significant QTL with similar effects across sexes were mapped to GGA2, 4 and 14 for heart weight, and to GGA2, 8 and 12 for gizzard %. Additionally, five genome-wide significant QTL with different effects across sexes were mapped to GGA 8, 19 and 26 for heart weight; GGA26 for heart % and GGA3 for hematocrit value. Five QTL were detected in chromosomal regions where QTL for similar traits were previously mapped in other F2 chicken populations. Seven novel genome-wide significant QTL are reported here, and 21 positional candidate genes in QTL regions were identified.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.
Resumo:
OBJECTIVES: The present investigation aimed to study the protective effect of intermittent normothermic cardioplegia in rabbit's hypertrophic hearts. METHODS: The parameters chosen were 1) the ratio heart weight / body weight, 2) the myocardial glycogen levels, 3) ultrastructural changes of light and electron microscopy, and 4) mitochondrial respiration. RESULTS: 1) The experimental model, coarctation of the aorta induced left ventricular hypertrophy; 2) the temporal evolution of the glycogen levels in hypertrophic myocardium demonstrates that there is a significant decrease; 3) It was observed a time-dependent trend of higher oxygen consumption values in the hypertrophic group; 4) there was a significant time-dependent decrease in the respiratory coefficient rate in the hypertrophic group; 5) the stoichiometries values of the ADP: O2 revealed the downward trend of the values of the hypertrophic group; 6) It was possible to observe damaged mitochondria from hypertrophic myocardium emphasizing the large heterogeneity of data. CONCLUSION: The acquisition of biochemical data, especially the increase in speed of glycogen breakdown, when anatomical changes are not detected, represents an important result even when considering all the difficulties inherent in the process of translating experimental results into clinical practice. With regard to the adopted methods, it is clear that morphometric methods are less specific. Otherwise, the biochemical data allow detecting alterations of glycogen concentrations and mitochondria respiration before the morphometric alterations should be detected
Resumo:
The aim of this study was to evaluate the reliability of the cardiothoracic ratio (CTR) in postmortem computed tomography (PMCT) and to assess a CTR threshold for the diagnosis of cardiomegaly based on the weight of the heart at autopsy. PMCT data of 170 deceased human adults were retrospectively evaluated by two blinded radiologists. The CTR was measured on axial computed tomography images and the actual cardiac weight was weighed at autopsy. Inter-rater reliability, sensitivity, and specificity were calculated. Receiver operating characteristic curves were calculated to assess enlarged heart weight by CTR. The autopsy definition of cardiomegaly was based on normal values of the Zeek method (within a range of both, one or two SD) and the Smith method (within the given range). Intra-class correlation coefficients demonstrated excellent agreements (0.983) regarding CTR measurements. In 105/170 (62 %) cases the CTR in PMCT was >0.5, indicating enlarged heart weight, according to clinical references. The mean heart weight measured in autopsy was 405 ± 105 g. As a result, 114/170 (67 %) cases were interpreted as having enlarged heart weights according to the normal values of Zeek within one SD, while 97/170 (57 %) were within two SD. 100/170 (59 %) were assessed as enlarged according to Smith's normal values. The sensitivity/specificity of the 0.5 cut-off of the CTR for the diagnosis of enlarged heart weight was 78/71 % (Zeek one SD), 74/55 % (Zeek two SD), and 76/59 % (Smith), respectively. The discriminative power between normal heart weight and cardiomegaly was 79, 73, and 74 % for the Zeek (1SD/2SD) and Smith methods respectively. Changing the CTR threshold to 0.57 resulted in a minimum specificity of 95 % for all three definitions of cardiomegaly. With a CTR threshold of 0.57, cardiomegaly can be identified with a very high specificity. This may be useful if PMCT is used by forensic pathologists as a screening tool for medico-legal autopsies.