967 resultados para Heart rate monitoring.
Resumo:
Objective: To investigate the influence of maternal glycemia on fetal heart rate (FHR) parameters analyzed by computerized cardiotocography in fetuses of diabetic mothers in the third trimester. Study design: Thirty-nine pregnant women with pregestational diabetes mellitus were studied prospectively. The inclusion criteria were a diagnosis of pregestational diabetes, singleton pregnancy between 36 and 40 weeks, and absence of fetal abnormalities. Computerized cardiotocography (System 8002) was performed over a period of 60 min and capillary glycemia was measured immediately before and 30 and 60 min after the beginning of the exam. The evaluations were done 2 h after lunch. Results: Nineteen patients (48.7%) presented mean glycemia >= 120 mg/dL The mean basal FHR was 136.7 +/- 10.0 bpm in the group with glycemia <120 mg/dL and 144.8 +/- 9.4 bpm in the group with glycemia >= 120 mg/dL (p = 0.013, Student`s t test). There was a significant positive correlation (Pearson`s test, p = 0.0001, r = 0.57) between basal FHR and mean glycemia. A significant negative correlation was observed between short-term variation and mean glycemia (Pearson`s test, p = 0.003, r = -0.47). No significant differences were observed between the other indices evaluated by computerized cardiotocography and glycemia. Conclusions: Maternal hyperglycemia at the time of cardiotocography is associated with elevated FHR. It seems to be important to understand how FHR parameters are influenced by maternal glycemic status at the time of fetal assessment in pregnancies complicated by diabetes. (C) 2009 Published by Elsevier Ireland Ltd.
Resumo:
Abnormal heart-rate (HR) response during or after a graded exercise test has been recognized as a strong and an independent predictor of all-cause mortality in healthy and diseased subjects. The purpose of the present study was to evaluate the HR response during exercise in women with systemic lupus erythematosus (SLE). In this case-control study, 22 women with SLE (age 29.5 perpendicular to 1.1 years) were compared with 20 gender-, BMI-, and age-matched healthy subjects (age 26.5 +/- 1.4 years). A treadmill cardiorespiratory test was performed and HR response during exercise was evaluated by the chronotropic reserve (CR). HR recovery (Delta HRR) was defined as the difference between HR at peak exercise and at both first (Delta HRR1) and second (Delta HRR2) minutes after exercising. SLE patients presented lower peak VO(2) when compared with healthy subjects (27.6 perpendicular to 0.9 vs. 36.7 perpendicular to 1.1 ml/kg/min, p = 0.001, respectively). Additionally, SLE patients demonstrated lower CR (71.8 +/- 2.4 vs. 98.2 +/- 2.6%, p = 0.001), Delta HRR1 (22.1 +/- 2.5 vs. 32.4 +/- 2.2%, p = 0.004) and Delta HRR2 (39.1 +/- 2.9 vs. 50.8 +/- 2.5%, p = 0.001) than their healthy peers. In conclusion, SLE patients presented abnormal HR response to exercise, characterized by chronotropic incompetence and delayed Delta HRR. Lupus (2011) 20, 717-720.
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
OBJECTIVE: To estimate the effects of combined spinal-epidural and traditional epidural analgesia on uterine basal tone and its association with the occurrence of fetal heart rate (FHR) abnormalities. METHODS: Seventy-seven laboring patients who requested pain relief during labor were randomly assigned to combined spinal-epidural (n=41) or epidural analgesia (n=36). Uterine contractions and FHR were recorded 15 minutes before and after analgesia. Uterine tone was evaluated with intrauterine pressure catheter. Primary outcomes were the elevation of baseline uterine tone and occurrence of FHR prolonged decelerations or bradycardia after analgesia. The influence of other variables such as oxytocin use, hypotension, and speed of pain relief were estimated using a logistic regression model. RESULTS: The incidence of all outcomes was significantly greater in the combined spinal-epidural group compared with epidural: uterine hypertonus (17 compared with 6; P=.018), FHR abnormalities (13 compared with 2; P<.01), and both events simultaneously (11 compared with 1; P<.01). Logistic regression analysis showed the type of analgesia as the only independent predictor of uterine hypertonus (odds ratio 3.526, 95% confidence interval 1.21-10.36; P=.022). For the occurrence of FHR abnormalities, elevation of uterine tone was the independent predictor (odds ratio 18.624, 95% confidence interval 4.46-77.72; P<.001). Regression analysis also found a correlation between decrease on pain scores immediately after analgesia and the estimated probability of occurrence of hypertonus and FHR abnormalities. CONCLUSION: Combined spinal-epidural analgesia is associated with a significantly greater incidence of FHR abnormalities related to uterine hypertonus compared with epidural analgesia. The faster the pain relief after analgesia, the higher the probability of uterine hypertonus and FHR changes. CLINICAL TRIAL REGISTRATION: Umin Clinical Trials Registry, http://www.umin.ac.jp/ctr/index.htm, UMIN000001186
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.
Resumo:
This study was conducted in one kidney, one clip (1K1C) Goldblatt hypertensive rats to evaluate vascular and cardiac autonomic control using different approaches: 1) evaluation of the autonomic modulation of heart rate (HR) and systolic arterial pressure (SAP) by means of autoregressive power spectral analysis 2) assessment of the cardiac baroreflex sensitivity; and 3) double blockade with methylatropine and propranolol. The 1K1C group developed hypertension and tachycardia. The 1K1C group also presented reduction in variance as well as in LF (0.23 +/- 0.1 vs. 1.32 +/- 0.2 ms(2)) and HF (6.6 +/- 0.49 vs. 15.1 +/- 0.61 ms(2)) oscillations of pulse interval. Autoregressive spectral analysis of SAP showed that 1K1C rats had an increase in variance and LF band (13.3 +/- 2.7 vs. 7.4 +/- 1.01 mmHg(2)) in comparison with the sham group. The baroreflex gain was attenuated in the hypertensive 1K1C (- 1.83 +/- 0.05 bpm/mmHg) rats in comparison with normotensive sham (-3.23 +/- 0.06 bpm/MmHg) rats. The autonomic blockade caused an increase in the intrinsic HR and sympathetic predominance on the basal HR of 1K1C rats. Overall, these data indicate that the tachycardia observed in the 1K1C group may be attributed to intrinsic cardiac mechanisms (increased intrinsic heart rate) and to a shift in the sympathovagal balance towards cardiac sympathetic over-activity and vagal suppression associated to depressed baroreflex sensitivity. Finally, the increase in the LF components of SAP also suggests an increase in sympathetic activity to peripheral vessels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose. aEuro integral Heart rate variability (HRV) decreases after an acute myocardial infarction (AMI) due to changes in cardiac autonomic balance. The purpose of the present study, therefore, was to evaluate the effects of a progressive exercise protocol used in phase I cardiac rehabilitation on the HRV of patients with post-AMI. Material and methods. aEuro integral Thirty-seven patients who had been admitted to hospital with their first non-complicated AMI were studied. The treated group (TG, n == 21, age == 52 +/-+/- 12 years) performed a 5-day programme of progressive exercise during phase I cardiac rehabilitation, while the control group (CG, n == 16, age == 54 +/-+/- 11 years) performed only respiratory exercises. Instantaneous heart rate (HR) and RR interval were acquired by a HR monitor (Polar (R) A (R) S810i). HRV was analysed by frequency domain methods. Power spectral density was expressed as normalised units (nu) at low (LF) and high (HF) frequencies, and as LF/HF. Results. aEuro integral After 5 days of progressive exercise, the TG showed an increase in HFnu (35.9 +/-+/- 19.5 to 65.19 +/-+/- 25.4) and a decrease in LFnu and LF/HF (58.9 +/-+/- 21.4 to 32.5 +/-+/- 24.1; 3.12 +/-+/- 4.0 to 1.0 +/-+/- 1.5, respectively) in the resting position (p < 0.05). No changes were observed in the CG. Conclusions. aEuro integral A progressive physiotherapeutic exercise programme carried out during phase I cardiac rehabilitation, as supplement to clinical treatment increased vagal and decreased sympathetic cardiac modulation in patients with post-AMI.
Resumo:
During thermo regulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3%) at the commencement of heating, and decreased to 30.7% at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.
Resumo:
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23degreesC and (3) heated via convective transfer by increasing water temperature from 23degreesC to 35degreesC. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23degreesC. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (
Resumo:
We administered arecoline to rats, with experimentally induced chagasic myocarditis, in order to study the sinus node sensitivity to a muscarinic agonist. Sixteen month old rats were inoculated with 200,000 T. cruzi parasites ("Y" strain). Between days 18 and 21 (acute stage), 8 infected rats and 8 age-matched controls received intravenous arecoline as a bolus injection at the following doses: 5.0, 10.0, 20.0, 40.0, and 80.0 mug/kg. Heart rate was recorded before, during and after each dose of arecoline. The remaining 8 infected animals and 8 controls were subjected to the same experimental procedure during the subacute stage, i.e., days 60 to 70 after inoculation. The baseline heart rate, of the animals studied during the acute stage (349 ± 68 bpm, mean ± SD), was higher than that of the controls (250 ± 50 bpm, p < 0.005). The heart rate changes were expressed as percentage changes over baseline values. A dose-response curve was constructed for each group of animals. Log scales were used to plot the systematically doubled doses of arecoline and the induced-heart rate changes. The slope of the regression line for the acutely infected animals (r = - 0.99, b =1.78) was not different from that for the control animals (r = - 0.97, b = 1.61). The infected animals studied during the subacute stage (r = - 0.99, b = 1.81) were also not different from the age-matched controls (r = - 0.99, b = 1.26, NS). Consequently, our results show no pharmacological evidence of postjunctional hypersensitivity to the muscarinic agonist arecoline. Therefore, these results indirectly suggest that the postganglionic parasympathetic innervation, of the sinus node of rats with autopsy proved chagasic myocarditis, is not irreversibly damaged by Trypanosoma cruzi.
Resumo:
We have studied the cardiac chronotropic responses to the Valsalva maneuver and to dynamic exercise of twenty chronic chagasic patients with normal left ventricular function and no segmental wall abnormalities by two-dimensional echocardiogram. The absolute increase in heart rate of the patients (Δ = 21.5 ± 10 bpm, M±SD) during the maneuver was significantly diminished when compared to controls (Δ = 31.30 ± 70, M±SD, p = 0.03). The minimum heart rate (58.24 ± 8.90 vs. 62.80 ± 10, p = 0.68) and the absolute decrease in heart rate at the end of the maneuver (Δ = 38.30 ± 13 vs. Δ = 31.47 ± 17, p = 0.10) were not different from controls. The initial heart rate acceleration during dynamic exercise (Δ = 12 ± 7.55 vs. Δ = 19 ± 7.27, M±SD, p = 0.01) was also diminished, but the heart rate recovery during the first ten seconds was more prominent in the sero-positive patients (Median: 14, Interquartile range: (9.75-17.50 vs. 5(0-8.75, p = 0.001). The serum levels of muscarinic cardiac auto-antibodies were significantly higher in the chagasic patients (Median: 34.58, Interquartile Range: 17-46.5, Optical Density) than in controls (Median: 0, Interquartile Range: 0-22.25, p = 0.001) and correlated significantly and directly (r = 0.68, p = 0.002) with early heart rate recovery during dynamic exercise. The results of this investigation indirectly suggest that, the cardiac muscarinic auto-antibodies may have positive agonist effects on parasympathetic heart rate control of chagasic patients.
Resumo:
The cardiac effects of experimentally induced myocarditis, when the parasite is obtained from mouse blood, are well known. However, the consequences of the infection when the parasites are obtained from bug faeces are less well defined. In the present investigation, we have used the "Y" strain of Trypanosoma cruzi, which was maintained in Rhodnius prolixus by repeated passages in mice. The faeces of 30 infected bugs were collected, the number of parasites counted and 4,000 parasites inoculated by the conjunctival route in 60 rats. Twenty-nine other rats received faeces from noninfected bugs (sham-inoculated controls) and 40 were used as normal controls. The heart rate of the three groups of animals was recorded under general anesthesia with ether. The heart rate, at day 0 pre-inoculation, was similar in the three groups of animals (Controls: 379 ± 27 beats/min Mean ± SD; Sham-inoculated: 366 ± 31; Infected: 351 ± 29) (p> 0.05). In the infected animals, the mean heart rate began to increase significantly by day 12 following infection (375 ± 31), reaching the highest values between days 18 (390 ± 33) and 21 (403 ± 33) and returned to baseline by day 30 (359 ± 28) (p< 0.05). The heart rate changes were statistically different from those observed in the sham-inoculated controls and in the control animals. Therefore, these heart rate changes were provoked by the Trypanosoma cruzi-induced infection. Thus, it appears that irrespective of the source of the parasite and route of inoculation Trypanosoma cruziacute infection provokes a transient sinus tachycardia.