930 resultados para Head-Mounted Displays
Resumo:
Die voranschreitende Entwicklung von Konzepten und Systemen zur Nutzung digitaler Informationen im industriellen Umfeld eröffnet verschiedenste Möglichkeiten zur Optimierung der Informationsverarbeitung und damit der Prozesseffektivität und -effizienz. Werden die relevanten Daten zu Produkten oder Prozessen jedoch lediglich in digitaler Form zur Verfügung gestellt, fällt ein Eingriff des Menschen in die virtuelle Welt immer schwerer. Auf Grundlage dessen wird am Beispiel der RFIDTechnologie dargestellt, inwiefern digitale Informationen durch die Verwendung von in den Arbeitsablauf integrierten Systemen für den Menschen nutzbar werden. Durch die Entwicklung eines Systems zur papierlosen Produktion und Logistik werden exemplarisch Einsatzszenarien zur Unterstützung des Mitarbeiters in Montageprozessen sowie zur Vermeidung von Fehlern in der Kommissionierung aufgezeigt. Dazu findet neben einer am Kopf getragenen Datenbrille zur Visualisierung der Informationen ein mobiles RFID-Lesegerät Anwendung, mit Hilfe dessen die digitalen Transponderdaten ohne zusätzlichen Aufwand für den Anwender genutzt werden können.
Resumo:
While navigation systems for cars are in widespread use, only recently, indoor navigation systems based on smartphone apps became technically feasible. Hence tools in order to plan and evaluate particular designs of information provision are needed. Since tests in real infrastructures are costly and environmental conditions cannot be held constant, one must resort to virtual infrastructures. This paper presents the development of an environment for the support of the design of indoor navigation systems whose center piece consists in a hands-free navigation method using the Microsoft Kinect in the four-sided Definitely Affordable Virtual Environment (DAVE). Navigation controls using the user's gestures and postures as the input to the controls are designed and implemented. The installation of expensive and bulky hardware like treadmills is avoided while still giving the user a good impression of the distance she has traveled in virtual space. An advantage in comparison to approaches using a head mounted display is that the DAVE allows the users to interact with their smartphone. Thus the effects of different indoor navigation systems can be evaluated already in the planning phase using the resulting system
Resumo:
PURPOSE External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). METHODS A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. RESULTS Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. CONCLUSIONS The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.
Resumo:
In this paper we present the design and implementation of a wearable application in Prolog. The application program is a "sound spatializer." Given an audio signal and real time data from a head-mounted compass, a signal is generated for stereo headphones that will appear to come from a position in space. We describe high-level and low-level optimizations and transformations that have been applied in order to fit this application on the wearable device. The end application operates comfortably in real-time on a wearable computer, and has a memory foot print that remains constant over time enabling it to run on continuous audio streams. Comparison with a version hand-written in C shows that the C version is no more than 20-40% faster; a small price to pay for a high level description.
Resumo:
AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck’s perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.
Resumo:
El desarrollo de las tecnologías de captura de contenido audiovisual, y la disminución del tamaño de sensores y cámaras, hace posible, a día de hoy, la captura de escenas desde múltiples puntos de vista simultáneamente, generando distintos formatos de vídeo 3D, cuyo elemento común es la inclusión de vídeo multivista. En cuanto a las tecnologías de presentación de vídeo 3D, actualmente existen diversas opciones tecnológicas, entre las cuales empiezan a tomar una gran importancia las gafas de realidad virtual, también conocidas como Head-Mounted Devices (HMD). Este tipo de gafas principalmente han sido utilizadas para la visualización de vídeo panorámico (o 360). Sin embargo, al permitir localizar al usuario (posición de la cabeza y orientación), habilitan también la posibilidad de desarrollar sistemas para la visualización de vídeo multivista, ofreciendo una funcionalidad similar a la de los monitores autoestereoscópicos. En este Trabajo Fin de Grado se ha desarrollado un prototipo de un sistema que permite visualizar vídeo 3D multicámara en las Oculus Rift, un dispositivo HMD. Este sistema toma como entrada una secuencia de vídeos multivista (real o generada por ordenador) y permite, a partir de la información proporcionada por los sensores de las Oculus Rift, variar el punto de vista adaptándolo a la posición del usuario. El sistema desarrollado simula la visualización de un monitor autoestereoscópico y es parametrizable. El sistema permite variar una serie de parámetros como la distancia interocular o la densidad de cámaras, y dispone de varios modos de funcionamiento. Esto permitirá que el sistema pueda utilizarse para distintas secuencias Super MultiView (SMV), volviéndolo a la vez útil para la realización de pruebas subjetivas de calidad de experiencia.
Resumo:
Federal Aviation Administration, Atlantic City International Airport, N.J.
Resumo:
The need to measure the response of the oculomotor system, such as ocular accommodation, accurately and in real-world environments is essential. New instruments have been developed over the past 50 years to measure eye focus including the extensively utilised and well validated Canon R-1, but in general these have had limitations such as a closed field-of-view, a poor temporal resolution and the need for extensive instrumentation bulk preventing naturalistic performance of environmental tasks. The use of photoretinoscopy and more specifically the PowerRefractor was examined in this regard due to its remote nature, binocular measurement of accommodation, eye movement and pupil size and its open field-of-view. The accuracy of the PowerRefractor to measure refractive error was on averaging similar, but more variable than subjective refraction and previously validated instrumentation. The PowerRefractor was found to be tolerant to eye movements away from the visual axis, but could not function with small pupil sizes in brighter illumination. The PowerRefractor underestimated the lead of accommodation and overestimated the slope of the accommodation stimulus response curve. The PowerRefractor and the SRW-5000 were used to measure the oculomotor responses in a variety of real-world environment: spectacles compared to single vision contract lenses; the use of multifocal contact lenses by pre-presbyopes (relevant to studies on myopia retardation); and ‘accommodating’ intraocular lenses. Due to the accuracy concerns with the PowerRefractor, a purpose-built photoretinoscope was designed to measure the oculomotor response to a monocular head-mounted display. In conclusion, this thesis has shown the ability of photoretinoscopy to quantify changes in the oculomotor system. However there are some major limitations to the PowerRefractor, such as the need for individual calibration for accurate measures of accommodation and vergence, and the relatively large pupil size necessary for measurement.
Resumo:
PURPOSE: To examine whether objective performance of near tasks is improved with various electronic vision enhancement systems (EVES) compared with the subject's own optical magnifier. DESIGN: Experimental study, randomized, within-patient design. METHODS: This was a prospective study, conducted in a hospital ophthalmology low-vision clinic. The patient population comprised 70 sequential visually impaired subjects. The magnifying devices examined were: patient's optimum optical magnifier; magnification and field-of-view matched mouse EVES with monitor or head-mounted display (HMD) viewing; and stand EVES with monitor viewing. The tasks performed were: reading speed and acuity; time taken to track from one column of print to the next; follow a route map, and locate a specific feature; and identification of specific information from a medicine label. RESULTS: Mouse EVES with HMD viewing caused lower reading speeds than stand EVES with monitor viewing (F = 38.7, P < .001). Reading with the optical magnifier was slower than with the mouse or stand EVES with monitor viewing at smaller print sizes (P < .05). The column location task was faster with the optical magnifier than with any of the EVES (F = 10.3, P < .001). The map tracking and medicine label identification task was slower with the mouse EVES with HMD viewing than with the other magnifiers (P < .01). Previous EVES experience had no effect on task performance (P > .05), but subjects with previous optical magnifier experience were significantly slower at performing the medicine label identification task with all of the EVES (P < .05). CONCLUSIONS: Although EVES provide objective benefits to the visually impaired in reading speed and acuity, together with some specific near tasks, some can be performed just as fast using optical magnification. © 2003 by Elsevier Inc. All rights reserved.
Resumo:
Thesis (Master's)--University of Washington, 2016-01
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
Includes index.g
Resumo:
"March 1961."
Resumo:
"September 1961."