148 resultados para Hausdorff frattali Mandelbrot


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has been partially supported by Grant No. DO 02-275, 16.12.2008, Bulgarian NSF, Ministry of Education and Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A05, 46F12, 28A78

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B50, 46B70, 46G12.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si vuole definire una misura sullo spazio R^n, cioè la misura di Hausdorff, che ci permetta di assegnare le nozioni di "lunghezza", "area", "volume" ad opportuni sottoinsiemi di R^n. La definizione della misura di Hausdorff sarà basata sulla richiesta che il ricoprimento segua la geometria locale dell'insieme da misurare. In termini matematici, questa richiesta si traduce nella scelta di ricoprimenti di diametro "piccolo". Si darà risalto al fatto che le due misure coincidano sui Boreliani di R^n e si estenderanno le relazioni tra le due misure su R^n ad un generico spazio di Banach. Nel primo capitolo, si danno delle nozioni basilari di teoria della misura, in particolare definizioni e proprietà che valgono per le misure di Hausdorff. Nel secondo capitolo, si definiscono le misure di Hausdorff, si dimostra che sono misure Borel-regolari, si vedono alcune proprietà di base legate a trasformazioni insiemistiche, si dà la definizione di dimensione di Hausdorff di un insieme e si mostrano esempi di insiemi "non regolari", cioè la cui dimensione non è un numero naturale. Nel terzo capitolo, si dimostra il Teorema di Ricoprimento di Vitali, fondato sul principio di massimalità di Hausdorff. Nel quarto capitolo, si dimostra che per ogni insieme Boreliano di R^n, la misura di Lebesgue e la misura di Hausdorff n-dimensionali coincidono. A tale scopo, si fa uso del Teorema del Ricoprimento di Vitali e della disuguaglianza isodiametrica, che verrà a sua volta dimostrata utilizzando la tecnica di simmetrizzazione di Steiner. Infine, nel quinto capitolo, si osserva che molte delle definizioni e proprietà viste per le misure di Hausdorff in R^n sono generalizzabili al contesto degli spazi metrici e si analizza il legame tra la misura di Hausdorff e la misura di Lebesgue nel caso di uno spazio di Banach n-dimensionale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let X and Y be Hausdorff topological vector spaces, K a nonempty, closed, and convex subset of X, C: K--> 2(Y) a point-to-set mapping such that for any x is an element of K, C(x) is a pointed, closed, and convex cone in Y and int C(x) not equal 0. Given a mapping g : K --> K and a vector valued bifunction f : K x K - Y, we consider the implicit vector equilibrium problem (IVEP) of finding x* is an element of K such that f (g(x*), y) is not an element of - int C(x) for all y is an element of K. This problem generalizes the (scalar) implicit equilibrium problem and implicit variational inequality problem. We propose the dual of the implicit vector equilibrium problem (DIVEP) and establish the equivalence between (IVEP) and (DIVEP) under certain assumptions. Also, we give characterizations of the set of solutions for (IVP) in case of nonmonotonicity, weak C-pseudomonotonicity, C-pseudomonotonicity, and strict C-pseudomonotonicity, respectively. Under these assumptions, we conclude that the sets of solutions are nonempty, closed, and convex. Finally, we give some applications of (IVEP) to vector variational inequality problems and vector optimization problems. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The branching structure of neurones is thought to influence patterns of connectivity and how inputs are integrated within the arbor. Recent studies have revealed a remarkable degree of variation in the branching structure of pyramidal cells in the cerebral cortex of diurnal primates, suggesting regional specialization in neuronal function. Such specialization in pyramidal cell structure may be important for various aspects of visual function, such as object recognition and color processing. To better understand the functional role of regional variation in the pyramidal cell phenotype in visual processing, we determined the complexity of the dendritic branching pattern of pyramidal cells in visual cortex of the nocturnal New World owl monkey. We used the fractal dilation method to quantify the branching structure of pyramidal cells in the primary visual area (V1), the second visual area (V2) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively), which are often associated with color processing. We found that, as in diurnal monkeys, there was a trend for cells of increasing fractal dimension with progression through these cortical areas. The increasing complexity paralleled a trend for increasing symmetry. That we found a similar trend in both diurnal and nocturnal monkeys suggests that it was a feature of a common anthropoid ancestor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.