964 resultados para Hamstring Flexibility
Resumo:
A través de la historia de la vida, gran parte de los organismos han desarrollado estrategias para responder a un mundo en constante cambio. Hoy en día, las actividades humanas producen cambios ambientales a una velocidad sin precedentes, lo cual se traduce en grandes desafíos para la persistencia de biodiversidad. Esta investigación evalúa las respuesta de los animales a los cambios ambientales enfocándose en la flexibilidad del comportamiento como estrategia adaptativa. En una primera aproximación a una escala evolutiva, se otorgan evidencias del vínculo hasta ahora tenue entre la cognición e historias de vida, entregando un claro apoyo a la relación entre longevidad, vida reproductiva y el tamaño del cerebro en mamíferos. La longevidad es el centro de muchas hipótesis respecto a las ventajas de desarrollar un cerebro grande, como por ejemplo en la hipótesis del buffer cognitivo y las respuestas flexibles frente a nuevos ambientes. En un segundo nivel, se abordan factores extrínsecos e intrínsecos que podrían explicar las diferencias individuales en innovación, un componente clave en la flexibilidad del comportamiento. Por medio de una aproximación experimental, se evalúan potenciales escenarios que podrían conducir a consistentes diferencias individuales en uno de los principales factores subyacentes a la innovación (i.e. la motivación), y el potencial control endocrino sobre estos escenarios. Posteriormente, con el objetivo de evaluar la respuesta de los animales frente a los cambios ambientales actuales, se explora la respuesta de los animales frente a una de las actividades humanas mas disruptivas sobre los ecosistemas, la urbanización. Por medio de un analisis filogenetico comparativo a nivel global en aves se abordan los mecanismos implicados en la perdida de biodiversidad observada en ambientes urbanos. Los resultados entregan evidencias sobre la importancia de procesos de dispersión local junto con el papel clave de los rasgos de historia de vida, pero en un sentido diferente al clasicamente pensado. Finalmente por medio de una revisión bibliográfica se entregan evidencias teóricas y empíricas que respaldan el rol clave de la flexibilidad del comportamiento en confrontar los desafíos de una vida urbana. La integración de estos resultados muestra cómo el pasado evolutivo contribuye a hacer frente a los retos ambientales actuales, y pone de relieve posibles consecuencias ante un planeta más cambiante que nunca.
Resumo:
A través de la historia de la vida, gran parte de los organismos han desarrollado estrategias para responder a un mundo en constante cambio. Hoy en día, las actividades humanas producen cambios ambientales a una velocidad sin precedentes, lo cual se traduce en grandes desafíos para la persistencia de biodiversidad. Esta investigación evalúa las respuesta de los animales a los cambios ambientales enfocándose en la flexibilidad del comportamiento como estrategia adaptativa. En una primera aproximación a una escala evolutiva, se otorgan evidencias del vínculo hasta ahora tenue entre la cognición e historias de vida, entregando un claro apoyo a la relación entre longevidad, vida reproductiva y el tamaño del cerebro en mamíferos. La longevidad es el centro de muchas hipótesis respecto a las ventajas de desarrollar un cerebro grande, como por ejemplo en la hipótesis del buffer cognitivo y las respuestas flexibles frente a nuevos ambientes. En un segundo nivel, se abordan factores extrínsecos e intrínsecos que podrían explicar las diferencias individuales en innovación, un componente clave en la flexibilidad del comportamiento. Por medio de una aproximación experimental, se evalúan potenciales escenarios que podrían conducir a consistentes diferencias individuales en uno de los principales factores subyacentes a la innovación (i.e. la motivación), y el potencial control endocrino sobre estos escenarios. Posteriormente, con el objetivo de evaluar la respuesta de los animales frente a los cambios ambientales actuales, se explora la respuesta de los animales frente a una de las actividades humanas mas disruptivas sobre los ecosistemas, la urbanización. Por medio de un analisis filogenetico comparativo a nivel global en aves se abordan los mecanismos implicados en la perdida de biodiversidad observada en ambientes urbanos. Los resultados entregan evidencias sobre la importancia de procesos de dispersión local junto con el papel clave de los rasgos de historia de vida, pero en un sentido diferente al clasicamente pensado. Finalmente por medio de una revisión bibliográfica se entregan evidencias teóricas y empíricas que respaldan el rol clave de la flexibilidad del comportamiento en confrontar los desafíos de una vida urbana. La integración de estos resultados muestra cómo el pasado evolutivo contribuye a hacer frente a los retos ambientales actuales, y pone de relieve posibles consecuencias ante un planeta más cambiante que nunca.
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
Purpose - There has been much research on manufacturing flexibility, but supply chain flexibility is still an under-investigated area. This paper focuses on supply flexibility, the aspects of flexibility related to the upstream supply chain. Our purpose is to investigate why and how firms increase supply flexibility.Methodology/Approach An exploratory multiple case study was conducted. We analyzed seven Spanish manufacturers from different sectors (automotive, apparel, electronics and electrical equipment).Findings - The results show that there are some major reasons why firms need supply flexibility (manufacturing schedule fluctuations, JIT purchasing, manufacturing slack capacity, low level of parts commonality, demand volatility, demand seasonality and forecast accuracy), and that companies increase this type of flexibility by implementing two main strategies: to increase suppliers responsiveness capability and flexible sourcing . The results also suggest that the supply flexibility strategy selected depends on two factors: the supplier searching and switching costs and the type of uncertainty (mix, volume or delivery).Research limitations - This paper has some limitations common to all case studies, such as the subjectivity of the analysis, and the questionable generalizability of results (since the sample of firms is not statistically significant).Implications - Our study contributes to the existing literature by empirically investigating which are the main reasons for companies needing to increase supply flexibility, how they increase this flexibility, and suggesting some factors that could influence the selection of a particular supply flexibility strategy.
Resumo:
Background and Objectives: To specify which of the documented cognitive and emotional deficits characterize adolescents with conduct disorder (CD) compared with high-risk controls. Methods: High-risk adolescent males with and without CD were compared on intellectual efficiency, cognitive flexibility, impulsivity, alexithymia, and cognitive coping strategies. Substance use was controlled for in analyses. Results: Both groups showed normal intellectual efficiency and cognitive flexibility, as weil as heightened alexithymia and bebavioral impulsivity. Youths with CD evidenced more self-defeating and black-and-white tbinking under stress, and more acting-out under negative affect, than those without CD. Conclusions: Deficits specifie to CD resided in facets of emotional functioning and cognitive coping that might be targeted by a coping skills intervention.
Resumo:
In this paper we study the structure of labor market flows in Spain and compare them with France and the US. We characterize a number of empirical regularities and stylized facts. One striking result is that the job finding rate is slightly higher than in France, while the jon loss rate is much higher, putting Spain half-way between France and the US. This suggests that while Spain has borne the full cost of its labor market reforms in terms of job precarity, the benefits in terms of job creation have been quite modest. We hypothesize that this has been due to the reform s credibility being imperfect, which leads toexpectation of reversal.
Resumo:
CONTEXT: A passive knee-extension test has been shown to be a reliable method of assessing hamstring tightness, but this method does not take into account the potential effect of gravity on the tested leg. OBJECTIVE: To compare an original passive knee-extension test with 2 adapted methods including gravity's effect on the lower leg. DESIGN: Repeated measures. SETTING: Laboratory. PARTICIPANTS: 20 young track and field athletes (16.6 ± 1.6 y, 177.6 ± 9.2 cm, 75.9 ± 24.8 kg). INTERVENTION: Each subject was tested in a randomized order with 3 different methods: In the original one (M1), passive knee angle was measured with a standard force of 68.7 N (7 kg) applied proximal to the lateral malleolus. The second (M2) and third (M3) methods took into account the relative lower-leg weight (measured respectively by handheld dynamometer and anthropometrical table) to individualize the force applied to assess passive knee angle. MAIN OUTCOME MEASURES: Passive knee angles measured with video-analysis software. RESULTS: No difference in mean individualized applied force was found between M2 and M3, so the authors assessed passive knee angle only with M2. The mean knee angle was different between M1 and M2 (68.8 ± 12.4 vs 73.1 ± 10.6, P < .001). Knee angles in M1 and M2 were correlated (r = .93, P < .001). CONCLUSIONS: Differences in knee angle were found between the original passive knee-extension test and a method with gravity correction. M2 is an improved version of the original method (M1) since it minimizes the effect of gravity. Therefore, we recommend using it rather than M1.
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
High-speed running accounts for the majority of hamstring strains in many sports. The terminal swing phase is believed to be the most hazardous as the hamstrings are undergoing an active lengthening contraction in a long muscle length position. Prevention-based strength training mainly focuses on eccentric exercises. However, it appears crucial to integrate other parameters than the contraction type. Therefore, the aim of this study is to present a conceptual framework based on six key parameters (contraction type, load, range of motion, angular velocity, uni-/bilateral exercises, kinetic chain) for the hamstring's strength exercise for strain prevention. Based on the biomechanical parameters of sprinting, it is proposed to use high-load eccentric contractions. The movement should be performed at a slow to moderate angular velocity and focused at the knee joint, while the hip is kept in a large flexion position in order to reach a greater elongation stress of the hamstrings than in the terminal swing phase. In this way, we believe that, during sprinting, athletes would be better trained to brake the knee extension effectively in the whole range of motion without overstretch of the hamstrings. Finally, based on its functional application, unilateral open kinetic chain should be preferred.
Resumo:
Numerous studies have examined which individual defense mechanisms are related with mental health, and which are linked with psychopathology. However, the idea that a flexible use of defensive mechanisms is related to psychological wellbeing remained a clinical assumption, which this study sought to test empirically. A total of 62 (N = 62) outpatients participated in the study and were assessed with the Symptom Checklist-90R and the Social Adjustment Self-rated Scale. A subsample of 40 participants was further assessed using the Hamilton Depression (HAMD-21) and Anxiety scales (HAMA-21). The first therapy session of all participants was transcribed and rated using the Defense Mechanisms Ratings Scales (), and the Overall Defensive Functioning (ODF) score, which indicates the maturity of one's defensive functioning, was computed. An indicator of flexible use of defenses was also calculated based on the Gini Concentration C measure. Results showed that defensive flexibility, but not ODF, could predict anxiety scores. Symptom severity was predicted by both ODF and defensive flexibility, although in directions opposite to our predictions. Results suggest that defensive flexibility captures another aspect of an individual's functioning not assessed by the ODF, and that it is a promising new way of documenting defensive functioning.
Resumo:
The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented.
Resumo:
We study the gains from increased wage flexibility and their dependence on exchange rate policy, using a small open economy model with staggered price andwage setting. Two results stand out: (i) the impact of wage adjustments on employment is smaller the more the central bank seeks to stabilize the exchange rate,and (ii) an increase in wage flexibility often reduces welfare, and more likely so ineconomies under an exchange rate peg or an exchange rate-focused monetary policy.Our findings call into question the common view that wage flexibility is particularlydesirable in a currency union.
Resumo:
The eccentric contraction mode was proposed to be the primary stimulus for optimum angle (angle at which peak torque occurs) shift. However, the training range of motion (or muscle excursion range) could be a stimulus as important. The aim of this study was to assess the influence of the training range of motion stimulus on the hamstring optimum length. It was hypothesised that performing a single set of concentric contractions beyond optimal length (seated at 80° of hip flexion) would lead to an immediate shift of the optimum angle to longer muscle length while performing it below (supine at 0° of hip flexion) would not provide any shift. Eleven male participants were assessed on an isokinetic dynamometer. In both positions, the test consisted of 30 consecutive knee flexions at 4.19 rad · s⁻¹. The optimum angle was significantly shifted by ∼15° in the direction of longer muscle length after the contractions at 80° of hip flexion, while a non-significant shift of 3° was found at 0°. The hamstring fatigability was not influenced by the hip position. It was concluded that the training range of motion seems to be a relevant stimulus for shifting the optimum angle to longer muscle length. Moreover, fatigue appears as a mechanism partly responsible for the observed shift.
Resumo:
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.