47 resultados para Halodule wrigthii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pumicestone Passage is a narrow waterway that lies to the north of and adjacent to Moreton Bay, and between mainland Queensland and Bribie Island, Australia. Anecdotal reports have suggested that the Passage is home to dugongs year-round despite winter water temperatures that are known to cause dugongs to migrate elsewhere. To examine the pattern of distribution and abundance of dugongs within the passage on a year-round basis, eight years of sightings data collected by a charter boat operator were examined. Dedicated aerial surveys of the passage were also conducted at two-monthly intervals over two years, and more intensively over a single winter. Dugong sightings were examined in relation to water temperatures and seagrass prevalence. The number of dugongs sighted in the area on any one survey varied from 0 to 13. Dugongs were seen in all months of the year and in each of the eight winters, indicating that Pumicestone Passage is used year-round despite winter water temperatures dropping to below 18 degrees C from June to August inclusive and below 16 degrees C in June. All dugong sightings occurred in the southern part of the passage, south of Tripcony Bight. Dugongs were associated with shallows that support Halophila and Halodule species of seagrass, food species that are favoured elsewhere in their range. The northern part of the passage also supports seagrasses that are eaten by dugongs and has water temperature ranges that are not appreciably different to those of the southern passage. However, the narrow channels and very shallow nature of the northern passage provides little to no deep-water refugia for dugongs and the seagrass beds are less extensive. This study suggests that southern Pumicestone Passage requires protection concomitant with it being a year-round refuge of the vulnerable dugong.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the impact of large-scale commercial and recreational harvesting of polychaete worms Marphysa spp. on macrobenthic assemblages in a subtropical estuary in Queensland, Australia, by examining: (1) the spatial extent of harvesting activities and the rate of recovery of the seagrass habitat over an 18 to 20 mo period; (2) the recovery of infauna in and around commercial pits of known age; (3) the indirect effects of physical disturbance from trampling and deposition of sediments during harvesting on epibenthos in areas adjacent to commercial and recreational pits; (4) impacts of potential indirect effects through manipulative experimentation. Harvesting caused a loss of seagrass, changes to the topography and compaction of the sediments associated with the creation of walls around commercial pits, and the deposition of rubble dug from within the pit. The walls and rubble were still evident after 1.8 to 20 mo, but comprised only a small proportion of the total area on the intertidal banks. There was a shift from an intertidal area dominated by Zostera capricorni to one with a mixture of Z. capricorni, Halophila spp. and Halodule uninervis, but there was no overall decline in the biomass of seagrass in these areas. There were distinct impacts from harvesting on the abundance of benthic infauna, especially amphipods, polychaetes and gastropods, and these effects were still detectable after 4 mo of potential recovery. After 12 me, there were no detectable differences in the abundances of these infauna between dug areas and reference areas, which suggested that infauna had recovered from impacts of harvesting; however, an extensive bloom of toxic fireweed Lyngbya majsucula may have masked any remaining impacts. There were no detectable impacts of harvesting on epifauna living in the seagrass immediately around commercial or recreational pits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disturbances alter competitive hierarchies by reducing populations and altering resource regimes. The interaction between disturbance and resource availability may strongly influence the structure of plant communities, as observed in the recolonization of seagrass beds in outer Florida Bay that were denuded by sea-urchin overgrazing. There is no consensus concerning the interaction between disturbance and resource availability on competition intensity (CI). On the other hand, species diversity is dependent on both factors. Peaks in species diversity have been observed to occur when both resource availability and disturbance intensity are high, thus implying that CI is low. Based on this supposition of previous models, I presented the resource-disturbance hypothesis as a graphical model to make predictions of CI as a function of both disturbance intensity and the availability of a limiting resource. The predictions of this model were tested in two experiments within a seagrass community in south Florida, in which transplants of Halodule wrightii were placed into near-monocultures of Syringodium filiforme in a full-factorial array. In the first experiment, two measures of relative CI were calculated based on the changes in the short-shoot number (SS) and of rhizome length (RHL) on the transplants. Both light and disturbance were identified as important factors, though the interaction between light * disturbance was not significant. Relative CISS ranged between 0.2 and 1.0 for the high light and high disturbance treatments and the relative CIRHL < 0 for the same treatments, though results were not significantly different due to high variability and low sample size. These results, including a contour schematic using six data points from the different treatment combinations, preliminarily suggests that the resource-disturbance hypothesis may be used may be used as a next step in developing our understanding of the mechanisms involved in structuring plant communities. Furthermore, the focus of the model is on the outcome of CI, which may be a useful predictor of changes in species diversity. Further study is needed to confirm the results of this study and validate the usefulness of this model in other systems. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that lowintensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elemental (C, N, and P) and isotope (δ13C, δ15N) content of leaves of the seagrasses Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were measured across a 10 000 km2 survey of the seagrass communities of South Florida, USA, in 1999 and 2000. Trends at local and broad spatial scales were compared to examine interspecific variation in the seagrass characteristics often used as ecological indicators. The elemental and stable isotope contents of all species were variable and demonstrated marked interspecific variation. At broad spatial scales, mean N:P ratios were lowest for T. testudinum (36.5 ± 1.1) and S. filiforme (38.9 ± 1.3), and highest for H. wrightii (44.1 ± 1.8). Stable carbon isotope ratios (δ13C) were highest for S. filiforme (–6.2 ± 0.2‰), intermediate for T. testudinum (–8.6 ± 0.2‰), and lowest for H. wrightii (–10.6 ± 0.3‰). Stable nitrogen isotopes (δ15N) were heaviest for T. testudinum (2.0 ± 0.1‰), and lightest for H. wrightii (1.0 ± 0.3‰) and S. filiforme (1.6 ± 0.2‰). Site depth was negatively correlated to δ13C for all species, while δ15N was positively correlated to depth for H. wrightii and S. filiforme. Similar trends were observed in local comparisons, suggesting that taxon-specific physiological/ecological properties strongly control interspecific variation in elemental and stable isotope content. Temporal trends in δ13C were measured, and revealed that interspecific variation was displayed throughout the year. This work documents interspecific variation in the nutrient dynamics of 3 common seagrasses in South Florida, indicating that interpretation of elemental and stable isotope values needs to be species specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annual mean salinity, light availability, and sediment depth to bedrock structured the submerged aquatic vegetation (SAV) communities in subtropical mangrove-lined estuaries. Three distinct SAV communities (i.e., Chara group, Halodule group, and Low SAV coverage group) were identified along the Everglades–Florida Bay ecotone and related to water quality using a discriminant function model that predicted the type of plant community at a given site from salinity, light availability, and sediment depth to bedrock. Mean salinity alone was able to correctly classify 78% of the sites and reliably separated the Chara group from the Halodule group. The addition of light availability and sediment depth to bedrock increased model accuracy to 90% and further distinguished the Chara group from the Halodule group. Light availability was uniquely valuable in separating the Chara group from the Low SAV coverage group. Regression analyses identified significant relationships between phosphorus concentration, phytoplankton abundance, and light availability and suggest that a decline in water transparency, associated with increasing salinity, may have also contributed to the historical decline of Chara communities in the region. This investigation applies relationships between environmental variables and SAV distribution and provides a case study into the application of these general principals to ecosystem management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass beds are the dominant benthic marine communities in the back reef environment of the Florida Keys. At a network of 30 permanent monitoring stations in this back reef environment, the seagrass Thalassia testudinum Banks & Soland. ex Koenig was the most common marine macrophyte, but the seagrasses Syringodium fi liforme Kuetz., and Halodule wrightii Aschers., as well as many taxa of macroalgae, were also commonly encountered. The calcareous green macroalgae, especially Halimeda spp. and Penicillus spp., were the most common macroalgae. The passage of Hurricane Georges on September 25, 1998 caused an immediate loss of 3% of the density of T. testudinum, compared to 19% of the S. fi liforme and 24% of the calcareous green algae. The seagrass beds at three of the stations were completely obliterated by the storm. Stations that had little to moderate sediment deposition recovered from the storm within 1 yr, while the station buried by 50 cm of sediment and the two stations that experienced substantial erosion had recovered very little during the 3 yrs after the storm. Early colonizers to these severely disturbed sites were calcareous green algae. Hurricanes may increase benthic macrophyte diversity by creating disturbed patches with the landscape, but moderate storm disturbance may actually reduce macrophyte diversity by removing the early successional species from mixed-species seagrass beds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oligotrophic phosphorus (P) limited seagrass ecosystem in Florida Bay was experimentally fertilized in a unique way. Perches were installed to encourage seabirds to roost and deliver an external source of nutrients via defecation. Two treatments were examined: (1) a chronic 23-year fertilization and (2) an earlier 28-month fertilization that was discontinued when the chronic treatment was initiated. Because of the low mobility of P in carbonate sediments, we hypothesized long-term changes to ecosystem structure and function in both treatments. Structural changes in the chronic treatment included a shift in the dominant seagrass species from Thalassia testudinum to Halodule wrightii, large increases in epiphytic biomass and sediment chlorophyll-a, and a decline in species richness. Functional changes included increased benthic metabolism and quantum efficiency. Initial changes in the 28-month fertilization were similar, but after 23 years of nutrient depuration T. testudinum has reestablished itself as the dominant species. However, P remains elevated in the sediment and H. wrightii has maintained a presence. Functionally the discontinued treatment remains altered. Biomass exceeds that in the chronic treatment and indices of productivity, elevated relative to control, are not different from the chronic fertilization. Cessation of nutrient loading has resulted in a superficial return to the pre-disturbance character of the community, but due to the nature of P cycles functional changes persist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photosynthetic bicarbonate () use properties of three widely distributed tropical seagrasses were compared using a series of laboratory experiments. Photosynthetic rates of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were monitored in an enclosed chamber while being subjected to shifts in pH and dissolved inorganic carbon. Specific mechanisms of seagrass use were compared by examining the photosynthetic effects of the carbonic anhydrase inhibitor acetazolamide (AZ). All seagrasses increased photosynthetic rates with reduced pH, suggesting a large effect of dissolved aqueous carbon dioxide (CO2(aq)). However, there was considerable interspecific variation in pH response. T. testudinum was highly sensitive, increasing photosynthetic rates by 100% as the pH was reduced from 8.2 to 7.4, whereas rates in H. wrightii and S. filiforme increased by only 20% over a similar range, and displayed prominent photosynthetic plateaus, indicating an increased capacity for use. Additional incubations that manipulated [] under constant [CO2(aq)] support these findings, as only H. wrightii and S. filiforme increased photosynthetic rates with increasing []. T. testudinum responded to AZ addition, indicating that carbonic anhydrase enzymes facilitate limited use. H. wrightii and S. filiforme showed no response to AZ, suggesting alternate, more efficient mechanisms of use. Estimated kinetic parameters, Ks(CO2) and Vmax, revealed interspecific variation and further support these conclusions. Variation in photosynthetic pH responses and AZ sensitivity indicate distinctions in the carbon use properties of seagrasses exposed to similar environmental conditions. These results suggest that not all seagrasses will similarly respond to future increases in CO2(aq) availability. Attention towards potential shifts in competitive interactions within multispecific seagrass beds is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.