811 resultados para Habitat preference
Resumo:
Senecio L., eine der größten Angiospermengattungen, entstand im mittleren Miozän in trockenen oder Winterregengebieten des südlichen Afrikas. Von dort ausgehend wurden die anderen Kontinente mehrmals unabhängig voneinander besiedelt. Die hohe Artenanzahl, das junge Alter und die was weltweite Verbreitung der Gattung stellt eine Besonderheit dar. Die meisten anderen jungen und schnellen Radiationen sind nicht so weit verbreitet. Es scheint, als wäre die hohe Artenanzahl und die weite Verbreitung das Ergebnis von einer guten Ausbreitungsfähigkeit, einem hohe Samenansatz sowie einer Präferenz für offene und gestörte Standorte.rnDie Paläarktis wurde zweimal unabhängig voneinander kolonisiert, beide Linien kommen in etwa in der gleichen Region vor, unterscheiden sich aber in ihrer Habitatpräferenz und Lebensdauer. Die eine Linie kommt zumeist entlang des Mittelmeeres vor und stammt am wahrscheinlichsten von annuellen Tieflandarten aus den trockenen oder Winterregengebieten des südlichen Afrikas ab. Die andere Linie stammt wahrscheinlich von Drakensbergarten ab und besiedelt auch bevorzugt bergige Regionen in der Paläarktis. Senecio ist außerdem die artenreichste Gattung in den tropisch afroalpinen Regionen Ostafrikas. Die Arten sind während des Pliozäns oder Pleistozäns entstanden und das Ergebnis von mehrfacher Einwanderung aus anderen temperaten Regionen, in situ Artbildung spielte nur eine untergeordnete Bedeutung. rn
Resumo:
Ten correlates of successful colonization were tested and met in the life history of the Cuban treefrog in Florida and the Caribbean. Like many successful colonizing species of animals, the Cuban treefrog was highly fecund; reproduction was possible at a small body size in males (27.0 mm) and females (45.0 mm), and large females could lay large clutches and eggs throughout the year. Generation times were short in this species thereby accelerating the colonization process. Tadpoles and post-metamorphic individuals could exploit a wide range of physical conditions with respect to weather conditions and structure of the habitat. The Cuban treefrog occupied the terrestrial-arboreal niche which was only marginally exploited by other species in Florida. Habitat preference of the Cuban treefrog was for mesophytic forests and disturbed areas, and both habitats were found in native and introduced ranges. The ability to coexist with man further enabled the Cuban treefrog to expand its geographic range. A broad diet enabled the Cuban treefrog to exploit a wide range of prey species and sizes thereby alleviating an important constraint to colonization success. The Cuban treefrog was gregarious and vagile, thereby accelerating the process of dispersal which is crucial to the colonization process. Thus, many features in its life history enabled the Cuban treefrog to rapidly disperse and colonize, often in high population densities, many kinds of sites in its native and introduced range. Conformity to these correlates by the Cuban treefrog ultimately provides predictive power regarding the future colonization of this tropical frog. ^
Resumo:
Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The Comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fish were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegates and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.^
Resumo:
Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.
Resumo:
Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.
Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.
In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.
In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.
For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.
Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
El estudio de los factores que rigen los patrones espaciales de la distribución del pastoreo de los herbívoros domésticos es fundamental en la ecología y el manejo de los recursos naturales. Aunque los productores y profesionales realizan ajustes anuales o estacionales de la carga animal para influir en la preferencia animal por determinados ambientes de pastoreo y alcanzar un uso eficiente del recurso forrajero, el manejo de la distribución del ganado continúa siendo un gran desafío. La heterogeneidad de los ambientes de pastoreo tiene dimensión tanto espacial como temporal, lo cual impone desafíos en el entendimiento de los factores que influyen en las decisiones de selección de hábitat por parte del ganado. En esta contribución comenzamos revisando los modelos conceptuales actuales del comportamiento del ganado a grandes escalas. Luego, presentamos algunos resultados de estudios conducidos en diferentes ecosistemas contrastantes de Argentina y New Mexico (EEUU). Estos estudios desarrollados usando animales con y sin collares GPS contribuyen a mejorar gradualmente las decisiones de manejo de los pastizales. Finalmente, hacemos unas consideraciones breves relacionadas con el manejo del ganado en Ecuador que pueden contribuir a mejorar la sustentabilidad de los sistemas de producción ganaderos.
Resumo:
1. A 2-year experimental seining programme and underwater visual censuses were undertaken to quantify the direct effects of active demersal fishing on the population structure and relative abundance of two sympatric seahorse species of conservation concern: the European long-snouted seahorse, Hippocampus guttulatus Cuvier 1829 and the short-snouted seahorse, Hippocampus hippocampus L. The influence of habitat preference on population-level responses to changes in habitat structure following a reduction in fishing effort was also investigated. 2. It was predicted that the benthic habitat would be more structurally complex after fishing ceased and that seahorse densities would increase in response to reduced fishing mortality. Furthermore, it was predicted that the magnitude of the increase in density would be greater for H. guttulatus than for H. hippocampus, because the former species prefers complex vegetated habitats while the latter species uses sparsely vegetated habitats. 3. As predicted, the amount of habitat cover increased significantly when seining ceased, primarily through increases in the abundance of drifting macroalgae and unattached invertebrates. Despite similarities in life histories, the two seahorse species responded differently in terms of magnitude and direction to reduced fishing effort: the abundance of H. guttulatus increased significantly while H. hippocampus decreased in abundance. 4. Results suggest that active demersal fishing may influence the magnitude and direction of the responses of benthic marine fishes to exploitation through its impacts on habitat structure. An increase in habitat cover appeared to favour higher densities of H. guttulatus when seining effort was reduced. By contrast, repeated seining, which maintained less complex habitats, appeared to favour greater abundances of H. hippocampus. 5. Given differences in habitat preference among benthic marine fishes subject to incidental capture in fisheries, simultaneous attempts to manage populations of sympatric species may require complementary strategies that support the persistence of diverse habitat types. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Background: A small pond, c. 90 years old, near Bern, Switzerland contains a population of threespine stickleback (Gasterosteus aculeatus) with two distinct male phenotypes. Males of one type are large, and red, and nest in the shallow littoral zone. The males of the other are small and orange, and nest offshore at slightly greater depth. The females in this population are phenotypically highly variable but cannot easily be assigned to either male type. Question: Is the existence of two sympatric male morphs maintained by substrate-associated male nest site choice and facilitated by female mate preferences? Organisms: Male stickleback caught individually at their breeding sites. Females caught with minnow traps. Methods: In experimental tanks, we simulated the slope and substrate of the two nesting habitats. We then placed individual males in a tank and observed in which habitat the male would build his nest. In a simultaneous two-stimulus choice design, we gave females the choice between a large, red male and a small, orange one. We measured female morphology and used linear mixed effect models to determine whether female preference correlated with female morphology. Results: Both red and orange males preferred nesting in the habitat that simulated the slightly deeper offshore condition. This is the habitat occupied by the small, orange males in the pond itself. The proportion of females that chose a small orange male was similar to that which chose a large red male. Several aspects of female phenotype correlated with the male type that a female preferred.
Resumo:
Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.
Resumo:
Predation risk can strongly constrain how individuals use time and space. Grouping is known to reduce an individual's time investment in costly antipredator behaviours. Whether grouping might similarly provide a spatial release from antipredator behaviour and allow individuals to use risky habitat more and, thus, improve their access to resources is poorly known. We used mosquito larvae, Aedes aegypti, to test the hypothesis that grouping facilitates the use of high-risk habitat. We provided two habitats, one darker, low-risk and one lighter, high-risk, and measured the relative time spent in the latter by solitary larvae versus larvae in small groups. We tested larvae reared under different resource levels, and thus presumed to vary in body condition, because condition is known to influence risk taking. We also varied the degree of contrast in habitat structure. We predicted that individuals in groups should use high-risk habitat more than solitary individuals allowing for influences of body condition and contrast in habitat structure. Grouping strongly influenced the time spent in the high-risk habitat, but, contrary to our expectation, individuals in groups spent less time in the high-risk habitat than solitary individuals. Furthermore, solitary individuals considerably increased the proportion of time spent in the high-risk habitat over time, whereas individuals in groups did not. Both solitary individuals and those in groups showed a small increase over time in their use of riskier locations within each habitat. The differences between solitary individuals and those in groups held across all resource and contrast conditions. Grouping may, thus, carry a poorly understood cost of constraining habitat use. This cost may arise because movement traits important for maintaining group cohesion (a result of strong selection on grouping) can act to exaggerate an individual preference for low-risk habitat. Further research is needed to examine the interplay between grouping, individual movement and habitat use traits in environments heterogeneous in risk and resources. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In addition to feeding on carrion tissues and fluids, social wasps can also prey on immature and adult carrion flies, thereby reducing their populations and retarding the decomposition process of carcasses. In this study, we report on the occurrence and behavior of social wasps attracted to vertebrate carrion. The collections were made monthly from September 2006 to October 2007 in three environments (rural, urban, and forest) in six municipalities of southeast Brazil, using baited bottle traps. We collected Agelaia pallipes (Olivier, 1791) (n = 143), Agelaia vicina (Saussure, 1854) (n = 106), Agelaia multipicta (Haliday, 1836) (n = 18), and Polybia paulista Ihering, 1896 (n = 3). The wasps were observed feeding directly on the baits and preying on adult insects collected in the traps. Bait and habitat associations, temporal variability of social wasps, and possible forensic implications of their actions are discussed. © 2011 Entomological Society of America.
Resumo:
Context The bush dog (Speothos venaticus) is difficult to observe, capture, and study. To date, indirect evidence and opportunistic field observations have been the primary sources of information about the species' ecology. Field data are urgently needed to clarify the species' ecological requirements, behaviour and movement patterns. Aims The present study uses 13 months of telemetry data from a group of bush dogs to begin to address questions about area requirements, habitat preferences and movement patterns of this difficult-to-study species. Methods We tracked a group of bush dogs (two adults, one juvenile, four young) in an area of intact and altered Cerrado (woodlandsavanna biome) in eastern Mato Grosso, Brazil (Nova Xavantina District). Key results The group had a total home range of 140km2 (fixed kernel 95%), with smaller seasonal 'subareas' (areas used for 12 months before moving to another area, with repetition of some areas over time) and demonstrated a preference for native habitats. Conclusions The bush dog's home range is greater than that of other canids of the same size, even correcting for group size. Patterns of seasonal movement are also different from what has been observed in other South American canids. Implications From our observations in the Brazilian savanna, bush dogs need large tracks of native habitat for their long-term persistence. Although the present study is based on a single pack, it is highly relevant for bush dog conservation because it provides novel information on the species' spatial requirements and habitat preferences. © 2012 CSIRO.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)