165 resultados para HYPERTHERMIA
Resumo:
Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.
Resumo:
Magnetic fluid hyperthermia (MFH) is considered a promising therapeutic technique for the treatment of cancer cells, in which magnetic nanoparticles (MNPs) with superparamagnetic behavior generate mild-temperatures under an AC magnetic field to selectively destroy the abnormal cancer cells, in detriment of the healthy ones. However, the poor heating efficiency of most NMPs and the imprecise experimental determination of the temperature field during the treatment, are two of the majors drawbacks for its clinical advance. Thus, in this work, different MNPs were developed and tested under an AC magnetic field (~1.10 kA/m and 200 kHz), and the heat generated by them was assessed by an infrared camera. The resulting thermal images were processed in MATLAB after the thermographic calibration of the infrared camera. The results show the potential to use this thermal technique for the improvement and advance of MFH as a clinical therapy.
Resumo:
Hyperthermia is teratogenic to human and animal embryos and induces mainly anomalies of the nervous system. However, the teratogenic mechanism is poorly understood. Mammalian embryos are known to switch from anaerobic to aerobic metabolism around the time of neural tube closure. This critical event might be sensitive to hyperthermia. The objective of the present study was to evaluate the ultrastructural changes of the mitochondria of the neuroepithelium (NE) of rat embryos following maternal exposure to hyperthermia. Pregnant rats were heat stressed for an hour on gestation day (GD) 9 and embryos were examined by electron microscopy on GD 10. NE presented extensive apoptosis. Intercellular junctions were weakened and copious cellular debris projected into the ventricle. The mitochondria were of diverse size and shape. Most of them were swollen and had short cristae and electron dense matrix. Hydropic changes were also observed in numerous mitochondria. Lipid-laden mitochondria were found in the apical portions of neuroblasts. The mesenchyme (ME) of heat-treated embryos showed paucity of cells and only as frequent apoptosis as the controls. Their mitochondria also showed changes similar to those of the NE. Additionally extensive lipid accumulation was observed in and in the vicinity of mitochondria, often surrounded by short strands of endoplasmic reticulum. Whereas mitochondrial pathology was associated with profound apoptosis in the NE, growth restriction and lipid accumulation accompanied mitochondrial changes in the ME. The results of this study indicate that the embryonic response to maternal heat shock is tissue-specific and morphologically distinct in this species.
Resumo:
A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 degrees C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.
Resumo:
Muscle atrophy in a number of acute wasting conditions is associated with an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. Although different initiators are involved, it is possible that the intracellular signalling events leading to upregulation of this pathway are the same in all catabolic conditions. This study investigates hyperthermia in murine myotubes as a model for increased protein degradation through the ubiquitin-proteasome pathway. The effect of eicosapentaenoic acid (EPA) on this process should identify common elements, since EPA has been shown to attenuate induction of the ubiquitin-proteasome pathway in cancer cachexia. Increasing the temperature of myotubes caused a progressive increase in protein degradation. This was associated with an increased proteasome 'chymotrypsin-like' enzyme activity, as well as increased expression of both mRNA and protein for 20S proteasome subunits and the ubiquitin-conjugating enzyme (E214k). This upregulation was not seen in cultures treated with EPA (50 μM), suggesting that it acts to prevent transcriptional activation of the ubiquitin-proteasome pathway in hyperthermia. These results suggest that protein catabolism in hyperthermia and cancer cachexia is mediated through a common pathway. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Hyperthermia is usually used at a sub-lethal level in cancer treatment to potentiate the effects of chemotherapy. The purpose of this study is to investigate the role of heating rate in achieving synergistic cell killing by chemotherapy and hyperthermia. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. The cytotoxicity, mode of cell death, induction of thermal tolerance and P-gp mediated MDR following the two different modes of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. A slow rate hyperthermia was provided by a cell culture incubator. The results show that the potentiating effect of hyperthermia to chemotherapy can be maximized by increasing the rate of heating as evident by the results from the cytotoxicity assay. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of the chemotherapeutic agents. Different modes of cell death are observed by the two hyperthermia delivery methods. The rapid rate laser-ICG hyperthermia @ 43°C caused cell necrosis whereas the slow rate incubator hyperthermia @ 43°C induced very mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.
Resumo:
Introduction: Nursing clinicians are primarily responsible for the monitoring and treatment of increased body temperature. The body temperature of patients during their acute care hospital stay is measured at regular repeated intervals. In the event a patient is assessed with an elevated temperature, a multitude of decisions are required. The action of instigating temperature reducing strategies is based upon the assumption that elevated temperature is harmful and that the strategy employed will have some beneficial effect. Background and Significance: The potential harmful effects of increased body temperature (fever, hyperthermia) following neurological insult are well recognised. Although few studies have investigated this phenomenon in the diagnostic population of non-traumatic subarachnoid haemorrhage, it has been demonstrated that increased body temperature occurs in 41 to 72% of patients with poor clinical outcome. However, in the Australian context the frequency, or other characteristics of increased body temperature, as well as the association between increased body temperature with poor clinical outcome has not been established. Design: This study used a correlational study design to: describe the frequency, duration and timing of increased body temperature; determine the association between increased body temperature and clinical outcome; and describe the clinical interventions used to manage increased body temperature in patients with non-traumatic subarachnoid haemorrhage. A retrospective clinical chart audit was conducted on 43 patients who met the inclusion criteria. Findings: The major findings of this study were: increased body temperature occurred frequently; persisted for a long time; and onset did not occur until 20 hours after primary insult; increased body temperature was associated with death or dependent outcome; and no intervention was recorded in many instances. Conclusion: This study has quantified in a non-traumatic subarachnoid haemorrhage patient population the characteristics of increased body temperature, established an association between increased body temperature with death or dependent outcome and described the current management of elevated temperatures in the Australian context to improve nursing practice, education and research.
Resumo:
Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.
Resumo:
Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints.
Resumo:
Concepts used in this chapter include: Thermoregulation:- Thermoregulation refers to the body’s sophisticated, multi-system regulation of core body temperature. This hierarchical system extends from highly thermo-sensitive neurons in the preoptic region of the brain proximate to the rostral hypothalamus, down to the brain stem and spinal cord. Coupled with receptors in the skin and spine, both central and peripheral information on body temperature is integrated to inform and activate the homeostatic mechanisms which maintain our core temperature at 37oC1. Hyperthermia:- An imbalance between the metabolic and external heat accumulated in the body and the loss of heat from the body2. Exertional heat stroke:- A disorder of excessive heat production coupled with insufficient heat dissipation which occurs in un-acclimated individuals who are engaging in over-exertion in hot and humid conditions. This phenomenon includes central nervous system dysfunction and critical dysfunction to all organ systems including renal, cardiovascular, musculoskeletal and hepatic functions. Non-exertional heat stroke:- In contrast to exertional heatstroke as a consequence of high heat production during strenuous exercise, non-exertional heatstroke results from prolonged exposure to high ambient temperature. The elderly, those with chronic health conditions and children are particularly susceptible.3 Rhabdomylosis:- An acute, sometimes fatal disease characterised by destruction of skeletal muscle. In exertional heat stroke, rhabdomylosis occurs in the context of strenuous exercise when mechanical and/or metabolic stress damages the skeletal muscle, causing elevated serum creatine kinease. Associated with this is the potential development of hyperkalemia, myoglobinuria and renal failure. Malignant hyperthermia:- Malignant hyperthermia is “an inherited subclinical myopathy characterised by a hypermetabolic reaction during anaesthesia. The reaction is related to skeletal muscle calcium dysregulation triggered by volatile inhaled anaesthetics and/or succinylcholine.”4 Presentation includes skeletal muscle rigidity, mixed metabolic and respiratory acidosis, tachycardia, hyperpyrexia, rhabdomylosis, hyperkalaemia, elevated serum creatine kinease, multi-organ failure, disseminated intravascular coagulation and death.5
Resumo:
We investigated the influence of rectal temperature on the immune system during and after exercise. Ten well-trained male cyclists completed exercise trials (90 min cycling at 60% VO(2max) + 16.1 - km time trial) on three separate occasions: once in 18 degrees C and twice in 32 degrees C. Twenty minutes after the trials in 32 degrees C, the cyclists sat for approximately 20 min in cold water (14 degrees C) on one occasion, whereas on another occasion they sat at room temperature. Rectal temperature increased significantly during cycling in both conditions, and was significantly higher after cycling in 32 degrees C than in 18 degrees C (P < 0.05). Leukocyte counts increased significantly during cycling but did not differ between the conditions. The concentrations of serum interleukin (IL)-6, IL-8 and IL-10, plasma catecholamines, granulocyte-colony stimulating factor, myeloperoxidase and calprotectin increased significantly following cycling in both conditions. The concentrations of serum IL-8 (25%), IL-10 (120%), IL-1 receptor antagonist (70%), tumour necrosis factor-alpha (17%), plasma myeloperoxidase (26%) and norepinephrine (130%) were significantly higher after cycling in 32 degrees C than in 18 degrees C. During recovery from exercise in 32 degrees C, rectal temperature was significantly lower in response to sitting in cold water than at room temperature. However, immune changes during 90 min of recovery did not differ significantly between sitting in cold water and at room temperature. The greater rise in rectal temperature during exercise in 32 degrees C increased the concentrations of serum IL-8, IL-10, IL-1ra, TNF-alpha and plasma myeloperoxidase, whereas the greater decline in rectal temperature during cold water immersion after exercise did not affect immune responses.