35 resultados para HYPERTHERMAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last twenty or so years the results of theory and experiment have produced much information on the characteristics of gas-surface interactions relevant to a satellite in hyperthermal free-molecular flow. This thesis contains reviews of the rarefied gas dynamics applicable to satellites and has attempted to compare existing models of gas-surface interaction with contemporary knowledge of such systems. It is shown that a more natural approach would be to characterise the gas-surface interaction using the normal and tangential momentum accommodation coefficients, igma' and igma respectively, specifically in the form igma = constant , igma' = igma'0 -igma'1sec i where i is the angle subtended between the incident flow and the surface normal and igma,igma'0 and igma'1 are constants. Adopting these relationships, the effects of atmospheric lift on inclination, i, and atmospheric drag on the semi-major axis, a, and eccentricity, e, have been investigated. Applications to ANS-1 (1974-70A) show that the observed perturbation in i can be ascribed primarily to non-zero igma'1 whilst perturbations in a and e produce constraint equations between the three parameters. The numerical results seem to imply that a good theoretical orbit is achieved despite a much lower drag coefficient than anticipated by earlier theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coralAcropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (~40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the early Eocene, a series of short-term global warming events ("hyperthermals") occurred in response to the rapid release of carbon into the oceans and atmosphere. In order to investigate the response of ocean redox to global warming, we have determined the molybdenum isotope compositions (d98/95Mo) of samples spanning one such hyperthermal (Eocene Thermal Maximum 2 (ETM-2, 54.1 Ma)), from Integrated Ocean Drilling Program Expedition 302 Site M0004A in the Arctic Ocean. The highest d98/95Mo in our sample set (2.00 ± 0.11 per mil) corresponds to the development of local euxinia at Site M0004A during the peak of ETM-2, which we interpret as recording the global seawater d98/95Mo at that time. The ETM-2 seawater d98/95Mo is indistinguishable from a recent estimate of seawater d98/95Mo from an earlier hyperthermal (Paleocene Eocene Thermal Maximum (PETM, 55.9 Ma), d98/95Mo = 2.08 ± 0.11 per mil). We argue that the similarity in seawater d98/95Mo during ETM-2 and the PETM was caused by the development of transient euxinia in the Arctic Ocean during each hyperthermal that allowed sediments accumulating in this basin to capture the long-term d98/95Mo of early Eocene seawater. Our new data therefore place a minimum constraint on the magnitude of transient global seafloor deoxygenation during early Eocene hyperthermals.