978 resultados para HYDROXIDE CEMENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the antimicrobial activity of a new root canal sealer containing calcium hydroxide (Acroseal) and the root canal sealer based on MTA (Endo CPM Sealer), in comparison with traditional sealers (Sealapex, Sealer 26 and Intrafill) and white MTA-Angelus, against five different microorganism strains. The materials and their components were evaluated after manipulation, employing the agar diffusion method. A base layer was made using Müller-Hinton agar (MH) and wells were made by removing agar. The materials were placed into the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. The results showed that Sealapex and its base paste, Sealer 26 and its powder, Endo CPM Sealer and its powder, white MTA and its powder all presented antimicrobial activity against all strains. Intrafill and its liquid presented antimicrobial activity against all strains except P. aeruginosa and Acroseal was effective only against M. luteus and S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the radiopacity of root canal sealers containing calcium hydroxide and MTA (Acroseal, Sealer 26, Sealapex, Endo CPM Sealer, Epiphany and Intrafill). Five disc-shaped specimens (10 x 1 mm) were fabricated from each material, according to the ISO 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal film and a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000) was set at 50 kVp, 10 mA, 18 pulses/s and distance of 33.5 cm. The radiographs were digitized and the radiopacity compared to that of the aluminum stepwedge using VIXWIN-2000 software (Gendex). The data (mmAl) were analyzed statistically by ANOVA and Tukey's test at the 5% significance level. Epiphany and Intrafill presented the highest radiopacity values (8.3 mmAl and 7.5 mmAl respectively, p < 0.05) followed by Sealer 26 (6.3 mmAl), Sealapex (6.1 mmAl) and Endo CPM Sealer (6 mmAl). Acroseal was the least radiopaque material (4 mmAl, p < 0.05). In conclusion, the calcium hydroxide- and MTA-containing root canal sealers had different radiopacities. However, all materials presented radiopacity values above the minimum recommended by the ISO standard. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly available materials for retrograde obturation should have their sealing properties evaluated. The goal of this study was to evaluate the sealing ability of Endo CPM sealer, an MTA-based endodontic cement. Single-rooted extracted human teeth were endodontically treated. After apical sectioning, retrograde cavities were prepared. Teeth were divided into five experimental groups (n=12), in which the following materials were used: Sealer 26 (S26), white Mineral Trioxide Aggregate (MTA), Endo CPM Sealer (CPM1), Endo CPM Sealer in thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE), and two control groups (n=3). After retrograde obturation, the teeth were immersed in 0.2% rhodamine B dye for 48 hours in a vacuum chamber Marginal leakage data were subjected to ANOVA and Tukey tests at 5% significance level. S26 presented greater sealing ability (p<0.05) than ZOE, MTA, CPM1, and CPM2, all of which had similar results (p>0.05). We concluded that Sealer 26 has the greatest sealing ability. Endo CPM Sealer, with sealing ability similar to MTA, could be used as a retrograde obturation material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective: The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. Material and Methods: The flowability test was performed according to the ISO 6876: 2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (alpha=5%). Results: In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions: The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate and compare the repair of bone defects filled with calcium aluminate cement (EndoBinder), mineral trioxide aggregate (MTA), and calcium hydroxide. Methods After mixing, the cements were inserted into bone defects (3.3 mm) mechanically created in the right and left tibias of 30 rats (Rattus norvegicus, Wistar). In the control group, the bone defects were filled with blood clot of the animal itself. After time intervals of 7, 30, and 90 days had elapsed, bone tissue biopsies (n = 5) were surgically obtained and submitted to laboratory processing. The response of bone tissue in contact with the materials was microscopically analyzed. The percentage of neoformed bone tissue in the defect was determined by means of planimetry counting points superimposed on the histologic image. Results Significant increase in the percentage of neoformed bone tissue was observed throughout the experimental periods in all groups (P < .05). For the cements EndoBinder and MTA (30 and 90 days), these percentage values were statistically higher than those of the control group (P < .05); however, they were similar to those of calcium hydroxide (P > .05). Conclusions EndoBinder and MTA allowed complete repair of bone defects created in rat tibias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Alkalinization potential is a fundamental property of endodontic epoxy-based cements containing calcium hydroxide. Studies have shown discrepant pH results for same materials at different evaluation periods. A possible reason accounting for these differences may be the assessment procedures. Objective: To evaluate the pH value of an epoxy-based cement (Sealer 26) in different periods of analysis, using two assessment methods. Material and methods: Sealer 26 was manipulated and immediately placed into polyethylene tubes (n=10, each group) and immersed in distilled water. In G1, the tubes were kept in the same water during all experiment; and in G2, the tubes were removed and placed into another flask with an equal amount of water after the pH evaluation. The pH of these solutions was measured at 24 hours, 7, 14 and 28 days. Analysis were made within the same group according to the experimental periods and between groups in each experimental period. Data were submitted to ANOVA (α = 5%) and t test, respectively. Results: For G1 and G2, all periods showed different pH values (p < 0.05), except between 14 and 28 days (p > 0.05) and between 7 and 14 days (p > 0.05), respectively. In each period, no significant differences were observed between the groups. Conclusion: The method to obtain the pH values in different experimental periods no interfered in the final results. However, difference was observed when the results were analyzed at same group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root canal and furcal perforations are causes of endodontic therapy failure and different materials that stimulate tissue mineralization have been proposed for perforation treatment. In the first case, a patient presented tooth 46 with unsatisfactory endodontic treatment and a periapical radiographic lesion. A radiolucent area compatible with a perforating internal resorption cavity was found in the mesial root. The granulation tissue was removed, and root canals were prepared. The intracanal medication was composed of calcium hydroxide and the perforation cavity was filled with Portland cement. The 11-year followup showed radiographic repair of the tissue adjacent to the perforation and absence of clinical signs and symptoms or periapical lesion. In the second case, a patient presented with edema on the buccal surface of tooth 46. The examination showed a radiolucent area in the furcation region compatible with an iatrogenic perforation cavity. The mesial root canals were calcified, and only the distal root canal was prepared. The cavity was filled with a calcium hydroxide-based paste and the distal root canal was obturated. In sequence, the perforation cavity was filled with Portland cement. The 9-year followup showed the tooth in masticatory function with radiographic and clinical aspects compatible with normality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermogravimetric analysis is one of the most common instrumental techniques used for the characterization of pastes, mortars and concretes based on both calcium hydroxide and Portland cement. Important information about pozzolanic materials can be assessed concerning calcium hydroxide consumption and the formation of new hydrated products. Nevertheless, in some cases, problems associated with the overlapped decomposition processes for hydrates make the analysis of obtained data difficult. In this paper, the use of high-resolution thermogravimetric analysis, a powerful technique that allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC catalyst-Portland cement pastes. These pastes were monitored for 1, 4, 8 h and 1, 2, 3, 7 and 28 curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and stratlingite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their relatively high calcium oxide content, industrial mineral oxide wastes are potential candidates for mineral sequestration of carbon dioxide (CO2). Cement kiln dust (CKD), a byproduct of cement manufacturing contains 20-60% CaO making it a possible candidate for CO2 sequestration. In this study, three types of CKD are characterized, before and after carbonation, using environmental scanning electron microscopy and energy dispersive x-ray microanalysis to determine the mineralogical and morphological changes occurring due to carbonation. The reactants, products, and precipitation mechanisms were investigated to enhance understanding of the governing processes and allow better utilization of CKD for CO2 sequestration. The results of multiple independent analyses confirmed the formation of CaCO3 during carbonation. Examinations of the reaction pathways found that CaO and calcium hydroxide (Ca(OH)2) were the major reactants. Three types of CaCO3 precipitation mechanisms were observed: (1) diffusion of CO2 into Ca(OH)2 particles causing precipitation in the pores of the particle and the growth of a CaCO3 ring from the outside inward, (2) precipitation onto existing particles, and (3) precipitation from aqueous solution. The growth of a CaCO3 ring on the outside of a particle may slow further diffusion of CO2 into a particle slowing iv the overall sequestration rate. Additionally, changes caused by carbonation in the solubility of trace metals were studied by mixing pre- and post-carbonated CKD with water and analyzing the solution using inductively coupled plasma mass spectrometry. Decreases in the leaching of chromium, lead, and copper were observed, and is an incentive for use of CKD for CO2 sequestration. Equilibrium modeling using PHREEQC confirmed that CaO and Ca(OH)2 would carbonate readily and form CaCO3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously degradation studies carried out, over a number of different mortars by the research team, have shown that observed degradation does not exclusively depend on the solution equilibrium pH, nor the aggressive anions relative solubility. In our tests no reason was found that could allow us to explain, why same solubility anions with a lower pH are less aggressive than others. The aim of this paper is to study cement pastes behavior in aggressive environments. As observed in previous research, this cement pastes behaviors are not easily explained only taking into account only usual parameters, pH, solubility etc. Consequently the paper is about studying if solution physicochemical characteristics are more important in certain environments than specific pH values. The paper tries to obtain a degradation model, which starting from solution physicochemical parameters allows us to interpret the different behaviors shown by different composition cements. To that end, the rates of degradation of the solid phases were computed for each considered environment. Three cement have been studied: CEM I 42.5R/SR, CEM II/A-V 42.5R and CEM IV/B-(P-V) 32.5 N. The pastes have been exposed to five environments: sodium acetate/acetic acid 0.35 M, sodium sulfate solution 0.17 M, a solution representing natural water, saturated calcium hydroxide solution and laboratory environment. The attack mechanism was meant to be unidirectional, in order to achieve so; all sides of cylinders were sealed except from the attacked surface. The cylinders were taking out of the exposition environments after 2, 4, 7, 14, 30, 58 and 90 days. Both aggressive solution variations in solid phases and in different depths have been characterized. To each age and depth the calcium, magnesium and iron contents have been analyzed. Hydrated phases evolution studied, using thermal analysis, and crystalline compound changes, using X ray diffraction have been also analyzed. Sodium sulphate and water solutions stabilize an outer pH near to 8 in short time, however the stability of the most pH dependent phases is not the same. Although having similar pH and existing the possibility of forming a plaster layer near to the calcium leaching surface, this stability is greater than other sulphate solutions. Stability variations of solids formed by inverse diffusion, determine the rate of degradation.