949 resultados para HUMAN POPULATIONS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: This study confirmed the absence of natural infection with Xenotropic murine leukemia virus-related virus (XMRV) or XMRV-related disease in human populations of the Brazilian Amazon basin. We demonstrated that 803 individuals of both sexes, who were residents of Belem in the Brazilian State of Pará, were not infected with XMRV. Methods: Individuals were divided into 4 subgroups: healthy individuals, individuals infected with human immunodeficiency virus, type 1 (HIV-1), individuals infected with human T-lymphotrophic virus, types 1 or 2 (HTLV-1/2), and individuals with prostate cancer. XMRV infection was investigated by nested PCR to detect the viral gag gene and by quantitative PCR to detect pol. Results: There was no amplification of either gag or pol segments from XRMV in any of the samples examined. Conclusions: This study supports the conclusions of the studies that eventually led to the retraction of the original study reporting the association between XMRV and human diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Khoisan people from Southern Africa maintained ancient lifestyles as hunter-gatherers or pastoralists up to modern times, though little else is known about their early history. Here we infer early demographic histories of modern humans using whole-genome sequences of five Khoisan individuals and one Bantu speaker. Comparison with a 420 K SNP data set from worldwide individuals demonstrates that two of the Khoisan genomes from the Ju/'hoansi population contain exclusive Khoisan ancestry. Coalescent analysis shows that the Khoisan and their ancestors have been the largest populations since their split with the non-Khoisan population similar to 100-150 kyr ago. In contrast, the ancestors of the non-Khoisan groups, including Bantu-speakers and non-Africans, experienced population declines after the split and lost more than half of their genetic diversity. Paleoclimate records indicate that the precipitation in southern Africa increased similar to 80-100 kyr ago while west-central Africa became drier. We hypothesize that these climate differences might be related to the divergent-ancient histories among human populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background N-acetyltransferase type 2 (Nat2) is a phase II drug- metabolizing enzyme that plays a key role in the bioactivation of aromatic and heterocyclic amines. Its relevance in drug metabolism and disease susceptibility remains a central theme for pharmacogenetic research, mainly because of its genetic variability among human populations. In fact, the evolutionary and ethnic-specific SNPs on the NAT2 gene remain a focus for the potential discoveries in personalized drug therapy and genetic markers of diseases. Despite the wide characterization of NAT2 SNPs frequency in established ethnic groups, little data are available for highly admixed populations. In this context, five common NAT2 SNPs (G191A, C481T, G590A, A803G and G857A) were investigated in a highly admixed population comprised of Afro-Brazilians, Whites, and Amerindians in northeastern Brazil. Thus, we sought to determine whether the distribution of NAT2 polymorphism is different among these three ethnic groups. Results Overall, there were no statistically significant differences in the distribution of NAT2 polymorphism when Afro-Brazilian and White groups were compared. Even the allele frequency of 191A, relatively common in African descendents, was not different between the Afro-Brazilian and White groups. However, allele and genotype frequencies of G590A were significantly higher in the Amerindian group than either in the Afro-Brazilian or White groups. Interestingly, a haplotype block between G590A and A803G was verified exclusively among Amerindians. Conclusions Our results indicate that ethnic admixture might contribute to a particular pattern of genetic diversity in the NAT2 gene and also offer new insights for the investigation of possible new NAT2 gene-environment effects in admixed populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The patterns of population genetic diversity depend to a large extent on past demographic history. Most human populations are known to have gone recently through a series of range expansions within and out of Africa, but these spatial expansions are rarely taken into account when interpreting observed genomic diversity, possibly because they are difficult to model. Here we review available evidence in favour of range expansions out of Africa, and we discuss several of their consequences on neutral and selected diversity, including some recent observations on an excess of rare neutral and selected variants in large samples. We further show that in spatially subdivided populations, the sampling strategy can severely impact the resulting genetic diversity and be confounded by past demography. We conclude that ignoring the spatial structure of human population can lead to some misinterpretations of extant genetic diversity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Motivation: Population allele frequencies are correlated when populations have a shared history or when they exchange genes. Unfortunately, most models for allele frequency and inference about population structure ignore this correlation. Recent analytical results show that among populations, correlations can be very high, which could affect estimates of population genetic structure. In this study, we propose a mixture beta model to characterize the allele frequency distribution among populations. This formulation incorporates the correlation among populations as well as extending the model to data with different clusters of populations. Results: Using simulated data, we show that in general, the mixture model provides a good approximation of the among-population allele frequency distribution and a good estimate of correlation among populations. Results from fitting the mixture model to a dataset of genotypes at 377 autosomal microsatellite loci from human populations indicate high correlation among populations, which may not be appropriate to neglect. Traditional measures of population structure tend to over-estimate the amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian framework.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite mounting genetic evidence implicating a recent origin of modern humans, the elucidation of early migratory gene-flow episodes remains incomplete. Geographic distribution of haplotypes may show traces of ancestral migrations. However, such evolutionary signatures can be erased easily by recombination and mutational perturbations. A 565-bp chromosome 21 region near the MX1 gene, which contains nine sites frequently polymorphic in human populations, has been found. It is unaffected by recombination and recurrent mutation and thus reflects only migratory history, genetic drift, and possibly selection. Geographic distribution of contemporary haplotypes implies distinctive prehistoric human migrations: one to Oceania, one to Asia and subsequently to America, and a third one predominantly to Europe. The findings with chromosome 21 are confirmed by independent evidence from a Y chromosome phylogeny. Loci of this type will help to decipher the evolutionary history of modern humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apart from reflecting modern human dental variation, differences in dental size among populations provide a means for studying continuous evolutionary processes and their mechanisms. Dental wear, on the other hand, has been widely used to infer dietary adaptations and variability among or within diverse ancient human populations. Few such studies have focused on modern foragers and farmers, however, and diverse methods have been used. This research aimed to apply a single, standardized, and systematic quantitative procedure to measure dental size and dentin exposure in order to analyze differences among several hunter-gatherer and agricultural populations from various environments and geographic origins. In particular, we focused on sexual dimorphism and intergroup differences in the upper and lower first molars. Results indicated no sexual dimorphism in molar size and wear within the studied populations. Despite the great ethnographic variation in subsistence strategies among these populations, our findings suggest that differences in sexual division of labor do not affect dietary wear patterns.