990 resultados para HUMAN NADPH OXIDASE
Resumo:
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-. but not the Noxl- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1- or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(center dot-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(center dot-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P = 0.036). Monocytes from SCD patients showed higher levels of p47 phox phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P = 0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P > 0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.
Resumo:
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apocynin has been used as an efficient inhibitor of the NADPH oxidase complex and its mechanism of inhibition is linked to prior activation through the action of peroxidascs. Here we studied the oxidation of apocynin catalyzed by myeloperoxidase (MPO) and activated neutrophils. We found that apocynin is easily oxidized by MPO/H2O2 or activated neutrophils and has as products dimer and trimer derivatives. Since apocynin impedes the migration of the cytosolic component p47phox to the membrane and this effect could be related to its conjugation with essential thiol groups, we studied the reactivity of apocynin and its MPO-catalyzed oxidation products with glutathione (GSH). We found that apocynin and its oxidation products do not react with GSH. However, this thiol compound was efficiently oxidized by the apocynin radical during the MPO-catalyzed oxidation. We suggest that the reactivity of apocynin radical with thiol compounds could be involved in the inhibitory effect of this methoxy-catechol on NADPH oxidase complex. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Redox processes are involved in the mechanism of action of NADPH oxidase inhibitors such as diphenyleneiodonium and apocynin. Here, we studied the structure-activity relationship for apocynin and analogous ortho-methoxy-substituted catechols as inhibitors of the NADPH oxidase in neutrophils and their reactivity with peroxidase. Aiming to alter the reduction potential, the ortho-methoxy-catechol moiety was kept constant and the substituents at para position related to the hydroxyl group were varied. Two series of compounds were employed: methoxy-catechols bearing electron-withdrawing groups (MC-W) such as apocynin, vanillin, 4-nitroguaiacol, 4-cyanoguaiacol, and methoxy-catechol bearing electron-donating groups (MC-D) such as 4-methylguaiacol and 4-ethylguaiacol. We found that MC-D were weaker inhibitors compared to MD-W. Furthermore, the radicals generated by oxidation of MC-W via MPO/H(2)O(2), but not for MC-D, were able to oxidize glutathione (GSH) as verified by the formation of thiyl radicals, depletion of GSH, and recycling of the ortho-methoxy-catechols during their oxidations. The capacity of oxidizing sulfhydryl (SH) groups was also verified when ovalbumin was incubated with MC-W, but not for MC-D. Since the effect of apocynin has been correlated with inactivation of the cytosolic fractions of the NADPH oxidase complex and its oxidation during the inhibitory process develops a special role in this process, we suggest that the close relationship between the reactivity of the radicals of MC-W compounds with thiol groups and their efficacy as NADPH oxidase inhibitor could be the chemical pathway behind the mechanism of action of apocynin and should be taken into account in the design of new and specific NADPH oxidase inhibitors. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Influence of N-acetylcysteine on NADPH oxidase complex in skeletal muscle of rats with heart failure
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)