982 resultados para HLA DQ antigen


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis of a photoreactive derivative of the human leukocyte antigen-A1 (HLA-A1)-restricted MAGE-1 peptide 161-169 (EADPTGHSY) is described. Using conventional automated solid-phase peptide synthesis, a photoreactive derivative of this peptide was synthesized by replacing histidine-167 with photo-reactive N-beta-4-azidosalicyloyl-L-2,3-diaminopropionic acid. The C-terminal tyrosine was incorporated as phosphotyrosine. This peptide derivative was radioiodinated in the presence of chloramine T. This iodination took place selectively at the photoreactive group, because the phosphate ester prevented tyrosine iodination. Following dephosphorylation with alkaline phosphatase and chromatographic purification, the radiolabeled peptide derivative was incubated with cells expressing HLA-A1 or other HLA molecules. Photoactivation resulted in efficient photoaffinity labeling of HLA-A1. Other HLA molecules or other cellular components were not detectably labeled. This labeling was inhibited by HLA-A1 but not by HLA-A2-binding peptides. This synthesis is generally applicable and can also be adapted to the synthesis of well-defined radiolabeled nonphotoreactive peptide derivatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Investigation of Chinese-Taiwanese patients with excessive sleepiness, but no association with other sleep disorders, and with the presence or absence of cataplexy. PATIENTS AND METHODS: Thirty-five patients, successively referred between 2002 and 2004, underwent polysomnography (PSG), repeat multiple sleep latency test (MSLT), and human leukocyte antigen (HLA) typing. Three patients without cataplexy also had cerebrospinal fluid (CSF) hypocretin measurements. RESULTS: DQB1*0602 was associated with cataplexy in over 90% of Chinese-Taiwanese cases. Absence of cataplexy and <2 sleep-onset REM periods (SOREMPs) was seen in only two subjects, but presence of two SOREMPs did not dissociate DQB1*0602 positive and negative or cataplexy positive and negative subjects. As a group, narcoleptics with cataplexy had a higher number of SOREMPs, and the mean sleep latency was much shorter in narcoleptics with cataplexy than in the non-cataplectic patients, independent of the number of SOREMPs. CONCLUSIONS: Chinese-Taiwanese patients with cataplexy present with similar HLA findings as Black and Caucasian patients, but the presence of two or more SOREMPs in Chinese-Taiwanese patients is not a sufficient diagnostic tool to identify narcolepsy. When cataplexy is not present, description of PSG nd HLA findings may be a better approach than using a label with little scientific significance, allowing for better collection of patients' phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vitiligo, a skin disorder characterized by the spontaneous destruction of melanocytes, is believed to be of autoimmune origin. We investigated the presence and functionality of CD8(+) T-cells specific for the melanocyte-associated antigens Melan-A, gp100, tyrosinase, and TRP-2 in the blood of HLA-A2(+) vitiligo patients. We enumerated antigen-specific CD8(+) T cells by major histocompatibility complex multimer staining directly ex vivo, as well as after 9 days of in vitro stimulation and assessed IFN-gamma secretion by enzyme-linked immunospot (Elispot) assay. Tyrosinase-, gp100-, or TRP-2-specific CD8(+) T cells could not be identified in the peripheral blood of individuals with vitiligo. Although Melan-A-specific T cells were detectable at levels comparable to Flu-MP-specific T cells by multimer staining, these lymphocytes did not express the skin-homing receptor cutaneous lymphocyte antigen, were phenotypically naïve (CD45RA(+)), and were unresponsive in the IFN-gamma Elispot assay, suggesting that they are unlikely to be involved in the etiopathogenesis of vitiligo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Donor cytomegalovirus seropositivity was reported to improve leukemia outcomes in HLA-A2 identical hematopoietic cell transplant (HCT) recipients, due to a possible cross-reactivity of donor HLA-A2-restricted CMV-specific T cells with minor histocompatibility (H) antigen of recipient cells. This study analyzed the role of donor CMV serostatus and HLA-A2 status on leukemia outcomes in a large population of HLA-identical HCT recipients. DESIGN AND METHODS: Leukemia patients transplanted between 1992 and 2003 at the Fred Hutchinson Cancer Research Center were categorized as standard risk [leukemia first remission, chronic myeloid leukemia in chronic phase (CML-CP)] and high risk (advanced disease) patients. Time-to-event analysis was used to evaluate the risk of relapse and death associated with HLA-A2 status and donor CMV serostatus. RESULTS: In standard risk patients, acute leukemia (p<0.001) and sex mismatch (female to male, p=0.004)) independently increased the risk of death, while acute leukemia increased the risk of relapse (p<0.001). In high risk patients acute leukemia (p=0.01), recipient age > or = 40 (p=0.005) and herpes simplex virus (HSV) seropositivity (p<0.001) significantly increased the risk death; HSV seropositivity (p=0.006) increased the risk of relapse. Donor CMV serostatus had no significant effect on mortality or relapse in any HLA group. INTERPRETATION AND CONCLUSION: This epidemiological study did not confirm the previously reported effect of donor CMV serostatus on the outcomes of leukemia in HLA-A2-identical HCT recipients. Addressing the question of cross-reactivity of HLA-A2-restricted CMV-specific T cells with minor H antigens in a clinical study would require knowledge of the patient's minor H antigen genotype. However, because of the unbalanced distribution of HLA-A2-restricted minor H antigens in the population and their incomplete identification, this question might be more appropriately evaluated in in vitro experiments than in a clinical study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many new types of vaccines against infectious or malignant diseases are currently being proposed. Careful characterization of the induced immune response is required in assessing their efficiency. While in most studies human tumor antigen-specific T cells are analyzed after in vitro re-stimulation, we investigated these T cells directly ex vivo using fluorescent tetramers. In peripheral blood lymphocytes from untreated melanoma patients with advanced disease, a fraction of tumor antigen (Melan-A/MART-1)-specific T cells were non-naive, thus revealing tumor-driven immune activation. After immunotherapy with synthetic peptides plus adjuvant, we detected tumor antigen-specific T cells that proliferated and differentiated to memory cells in vivo in some melanoma patients. However, these cells did not present the features of effector cells as found in cytomegalovirus specific T cells analyzed in parallel. Thus, peptide plus adjuvant vaccines can lead to activation and expansion of antigen specific CD8(+) T cells in PBL. Differentiation to protective CD8(+) effector cells may, however, require additional vaccine components that stimulate T cells more efficiently, a major challenge for the development of future immunotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy. The hypocretin/orexin deficiency is likely to be the key to its pathophysiology in most of cases although the cause of human narcolepsy remains elusive. Acting on a specific genetic background, an autoimmune process targeting hypocretin neurons in response to yet unknown environmental factors is the most probable hypothesis in most cases of human narcolepsy with cataplexy. Although narcolepsy presents one of the tightest associations with a specific human leukocyte antigen (HLA) (DQB1*0602), there is strong evidence that non-HLA genes also confer susceptibility. In addition to a point mutation in the prepro-hypocretin gene discovered in an atypical case, a few polymorphisms in monoaminergic and immune-related genes have been reported associated with narcolepsy. The treatment of narcolepsy has evolved significantly over the last few years. Available treatments include stimulants for hypersomnia with the quite recent widespread use of modafinil, antidepressants for cataplexy, and gamma-hydroxybutyrate for both symptoms. Recent pilot open trials with intravenous immunoglobulins appear an effective treatment of cataplexy if applied at early stages of narcolepsy. Finally, the discovery of hypocretin deficiency might open up new treatment perspectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: To determine the extent to which major histoincompatibilities are recognized after bone marrow transplantation, we characterized the specificity of the cytotoxic T lymphocytes isolated during graft-versus-host disease. We studied three patients transplanted with marrow from donors who were histoincompatible for different types of HLA antigens. METHODS: Patient 1 was mismatched for one "ABDR-antigen" (HLA-A2 versus A3). Two patients were mismatched for antigens that would usually not be taken into account by standard selection procedures: patient 2 was mismatched for an "HLA-A subtype" (A*0213 versus A*0201), whereas patient 3 was mismatched for HLA-C (HLA-C*0501 versus HLA-C*0701). All three HLA class I mismatches were detected by a pretransplant cytotoxic precursor test. RESULTS: Analysis of the specificity of the cytotoxic T lymphocyte clones isolated after transplantation showed that the incompatibilities detected by the pretransplant cytotoxic precursor assay were the targets recognized during graft-versus-host disease. CONCLUSIONS: Independent of whether the incompatibility consisted of a "full" mismatch, a "subtype" mismatch, or an HLA-C mismatch, all clones recognized the incompatible HLA molecule. In addition, some of these clones had undergone antigen selection and were clearly of higher specificity than the ones established before transplantation, indicating that they had been participating directly in the antihost immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.