880 resultados para HIGH-FAT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. METHODS: We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). FINDINGS: HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman's correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=-0.59, p=0.0065) insulin sensitivity. CONCLUSIONS: Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postprandial inflammation is an important factor for human health since chronic low-grade inflammation is associated with chronic diseases. Dairy products have a weak but significant anti-inflammatory effect on postprandial inflammation. The objective of the present study was to compare the effect of a high-fat dairy meal (HFD meal), a high-fat non-dairy meal supplemented with milk (HFM meal) and a high-fat non-dairy control meal (HFC meal) on postprandial inflammatory and metabolic responses in healthy men. A cross-over study was conducted in nineteen male subjects. Blood samples were collected before and 1, 2, 4 and 6 h after consumption of the test meals. Plasma concentrations of insulin, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and C-reactive protein (CRP) were measured at each time point. IL-6, TNF-α and endotoxin concentrations were assessed at baseline and endpoint (6 h). Time-dependent curves of these metabolic parameters were plotted, and the net incremental AUC were found to be significantly higher for TAG and lower for CRP after consumption of the HFM meal compared with the HFD meal; however, the HFM and HFD meals were not different from the HFC meal. Alterations in IL-6, TNF-α and endotoxin concentrations were not significantly different between the test meals. The results suggest that full-fat milk and dairy products (cheese and butter) have no significant impact on the inflammatory response to a high-fat meal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12) or very high-fat (HF, N = 24) chow. An exercise training protocol (treadmill) was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed), exercised groups (SC-Ex, HF-Ex), or switched from HF to SC (HF/SC-Sed and HF/SC-Ex). HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001), and exercise reduced it by 23% (P < 0.0001). Hepatic enzymes ALP (+80%), ALT (+100%) and AST (+70%) were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001). Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001), and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silybin, a natural antioxidant, has been traditionally used against a variety of liver ailments. To investigate its effect and the underlying mechanisms of action on non-alcoholic fatty liver in rats, we used 60 4-6-week-old male Sprague-Dawley rats to establish fatty liver models by feeding a high-fat diet for 6 weeks. Hepatic enzyme, serum lipid levels, oxidative production, mitochondrial membrane fluidity, homeostasis model assessment-insulin resistance index (HOMA-IR), gene and protein expression of adiponectin, and resistin were evaluated by biochemical, reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Compared with the model group, silybin treatment (26.25 mg·kg-1·day-1, started at the beginning of the protocol) significantly protected against high-fat-induced fatty liver by stabilizing mitochondrial membrane fluidity, reducing serum content of alanine aminotransferase (ALT) from 450 to 304 U/L, decreasing hepatic malondialdehyde (MDA) from 1.24 to 0.93 nmol/mg protein, but increasing superoxide dismutase (SOD) and glutathione (GSH) levels from 8.03 to 9.31 U/mg protein and from 3.65 to 4.52 nmol/mg protein, respectively. Moreover, silybin enhanced the gene and protein expression of adiponectin from 215.95 to 552.40, but inhibited that of resistin from 0.118 to 0.018. Compared to rosiglitazone (0.5 mg·kg-1·day-1, started at the beginning of the protocol), silybin was effective in stabilizing mitochondrial membrane fluidity, reducing SOD as well as ALT, and regulating gene and protein expression of adiponectin (P < 0.05). These results suggest that mitochondrial membrane stabilization, oxidative stress inhibition, as well as improved insulin resistance, may be the essential mechanisms for the hepatoprotective effect of silybin on non-alcoholic fatty liver disease in rats. Silybin was more effective than rosiglitazone in terms of maintaining mitochondrial membrane fluidity and reducing oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the effects of exercise training on triglyceride deposition and the expression of musclin and glucose transporter 4 (GLUT4) in a rat model of insulin resistance. Thirty male Sprague-Dawley rats (8 weeks old, weight 160±10 g) were fed a high-fat diet (40% calories from fat) and randomly divided into high-fat control group and swimming intervention group. Rats fed with standard food served as normal control. We found that 8-week swimming intervention significantly decreased body weight (from 516.23±46.27 to 455.43±32.55 g) and visceral fat content (from 39.36±2.50 to 33.02±2.24 g) but increased insulin sensitivity index of the rats fed with a high-fat diet. Moreover, swimming intervention improved serum levels of TG (from 1.40±0.83 to 0.58±0.26 mmol/L) and free fatty acids (from 837.80±164.25 to 556.38±144.77 μEq/L) as well as muscle triglycerides deposition (from 0.55±0.06 to 0.45±0.02 mmol/g) in rats fed a high-fat diet. Compared with rats fed a standard food, musclin expression was significantly elevated, while GLUT4 expression was decreased in the muscles of rats fed a high-fat diet. In sharp contrast, swimming intervention significantly reduced the expression of musclin and increased the expression of GLUT4 in the muscles of rats fed a high-fat diet. In conclusion, increased musclin expression may be associated with insulin resistance in skeletal muscle, and exercise training improves lipid metabolism and insulin sensitivity probably by upregulating GLUT4 and downregulating musclin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidants have the ability to neutralize free radicals produced in the body during lipid oxidation. The objective in this article was to study the effect of the barley extract on lipid oxidation in rats subjected to a high-fat diet. The experiment lasted 67 days. The animals were separated into three experimental groups: standard (P), high-fat diet group (L), and group with high-fat diet supplemented with barley extract (C). The feed intake of L and C groups was the lowest (p < 0.05). The treatments did not influence weight gain, organ weight, and the blood parameters measured. However, the levels of malondialdehyde present in the liver tissue were higher in the L group and lower in the P and C groups. Therefore, the results indicated an increased level of lipid peroxidation in the liver of rats subjected to high-fat diet, which was reduced by the consumption of barley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct high fat (HF) feeding has adverse effects on body composition and bone development in rodents. However, it is unclear whether maternal HF feeding has similar effects in male rat offspring. The objectives of this thesis were to determine if maternal HF feeding altered body composition, plasma hormones, bone development, and bone fatty acid composition in male offspring at weaning and 3 months of age. Maternal HF feeding increased bone mass and altered femur fatty acid composition at weaning, without differences in fat mass, lean mass, plasma hormones, or bone mass (femur or lumbar vertebrae). However, early differences did not persist at 3 months of age or contribute to lower bone strength – following consumption of a control diet post-weaning. These findings suggest that maternal HF feeding can alter body composition and bone development in weanling male offspring, without long-lasting effects if a healthy control diet is consumed post-weaning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High fat diet (HFD) consumption in rodents alters body composition and weakens bones. Whether female offspring of mothers consuming a HFD are similarly affected at weaning and early adulthood is unclear. This research determined whether maternal HFD contributes to long-lasting alterations in body composition and bone health of female offspring. Rats were fed control or HFD for 10 weeks prior to and throughout pregnancy and lactation. Female offspring were studied at weaning or 3 months of age (consumed control diet). Main findings in female offspring: maternal HFD decreased lean mass, increased fat mass and femoral BMD at weaning, but not at 3 months; weanling femoral lipid composition reflected maternal diet, persisting to 3 months of age (decreased total and n6 polyunsaturates, increased saturates); and no differences in femoral strength at 3 months. In summary, 3 month old female offspring have similar body composition and bone health regardless of maternal diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes. Methods Since bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]). Results Compared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines). Conclusions/interpretation Together, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.