817 resultados para HERMITE POLYNOMIALS
Resumo:
The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.
Resumo:
Ophthalmic wavefront sensors typically measure wavefront slope, from which wavefront phase is reconstructed. We show that ophthalmic prescriptions (in power-vector format) can be obtained directly from slope measurements without wavefront reconstruction. This is achieved by fitting the measurement data with a new set of orthonormal basis functions called Zernike radial slope polynomials. Coefficients of this expansion can be used to specify the ophthalmic power vector using explicit formulas derived by a variety of methods. Zernike coefficients for wavefront error can be recovered from the coefficients of radial slope polynomials, thereby offering an alternative way to perform wavefront reconstruction.
Resumo:
Recently, several classes of permutation polynomials of the form (x2 + x + δ)s + x over F2m have been discovered. They are related to Kloosterman sums. In this paper, the permutation behavior of polynomials of the form (xp − x + δ)s + L(x) over Fpm is investigated, where L(x) is a linearized polynomial with coefficients in Fp. Six classes of permutation polynomials on F2m are derived. Three classes of permutation polynomials over F3m are also presented.
Resumo:
Recurrence relations in mathematics form a very powerful and compact way of looking at a wide range of relationships. Traditionally, the concept of recurrence has often been a difficult one for the secondary teacher to convey to students. Closely related to the powerful proof technique of mathematical induction, recurrences are able to capture many relationships in formulas much simpler than so-called direct or closed formulas. In computer science, recursive coding often has a similar compactness property, and, perhaps not surprisingly, suffers from similar problems in the classroom as recurrences: the students often find both the basic concepts and practicalities elusive. Using models designed to illuminate the relevant principles for the students, we offer a range of examples which use the modern spreadsheet environment to powerfully illustrate the great expressive and computational power of recurrences.
Resumo:
Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
The details of development of the stiffness matrix of a laminated anisotropic curved beam finite element are reported. It is a 16 dof element which makes use of 1-D first order Hermite interpolation polynomials for expressing it's assumed displacement state. The performance of the element is evaluated considering various examples for which analytical or other solutions are available.
Resumo:
A new digital polynomial generator using the principle of dual-slope analogue-to-digital conversion is proposed. Techniques for realizing a wide range of integer as well as fractional coefficients to obtain the desired polynomial have been discussed. The suitability of realizing the proposed polynomial generator in integrated circuit form is also indicated.
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
Curved hollow bars of laminated anisotropic construction are used as structural members in many industries. They are used in order to save weight without loss of stiffness in comparison with solid sections. In this paper are presented the details of the development of the stiffness matrices of laminated anisotropic curved hollow bars under line member assumptions for two typical sections, circular and square. They are 16dof elements which make use of one-dimensional first-order Hermite interpolation polynomials for the description of assumed displacement state. Problems for which analytical or other solutions are available are first solved using these elements. Good agreement was found between the results. In order to show the capability of the element, application is made to carbon fibre reinforced plastic layered anisotropic curved hollow bars.
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
In this study, the Krylov-Bogoliubov-Mitropolskii-Popov asymptotic method is used to determine the transient response of third-order non-linear systems. Instead of averaging the non-linear functions over a cycle, they are expanded in ultraspherical polynomials and the constant term is retained. The resulting equations are solved to obtain the approximate solution. A numerical example is considered and the approximate solution is compared with the digital solution. The results show that there is good agreement between the two values.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.