993 resultados para Guanine Nucleotide Exchange Factors
Resumo:
Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.
Resumo:
Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.
Resumo:
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.
Resumo:
Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.
Resumo:
The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.
Resumo:
Targeting of many secretory and membrane proteins to the inner membrane in Escherichia coli is achieved by the signal recognition particle (SRP) and its receptor (FtsY). In E. coli SRP consists of only one polypeptide (Ffh), and a 4.5S RNA. Ffh and FtsY each contain a conserved GTPase domain (G domain) with an α-helical domain on its N terminus (N domain). The nucleotide binding kinetics of the NG domain of the SRP receptor FtsY have been investigated, using different fluorescence techniques. Methods to describe the reaction kinetically are presented. The kinetics of interaction of FtsY with guanine nucleotides are quantitatively different from those of other GTPases. The intrinsic guanine nucleotide dissociation rates of FtsY are about 105 times higher than in Ras, but similar to those seen in GTPases in the presence of an exchange factor. Therefore, the data presented here show that the NG domain of FtsY resembles a GTPase–nucleotide exchange factor complex not only in its structure but also kinetically. The I-box, an insertion present in all SRP-type GTPases, is likely to act as an intrinsic exchange factor. From this we conclude that the details of the GTPase cycle of FtsY and presumably other SRP-type GTPases are fundamentally different from those of other GTPases.
Resumo:
Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using 3H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1–GDP, but binds to the transitory Sec7d–ARF1–GDP complex and stabilizes it. Two pairs of residues at positions 190–191 and 198–208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1–GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1–GDP and a surface encompassing residues 190–208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1–GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.
Resumo:
Objective-Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. Methods and Results-Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). Conclusions-PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA. (Arterioscler Thromb Vasc Biol. 2009;29:1657-1663.)
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.
Resumo:
The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.
Resumo:
Dans certaines conditions pathologiques, telles que l'hypertension artérielle ou l'infarctus du myocarde, le coeur répond à une augmentation de la post-charge par des processus de remodelage aboutissant à une hypertrophie du ventricule gauche. L'hypertrophie cardiaque est caractérisée par une croissance hypertrophique des cardiomyocytes, ainsi que par une différenciation des fibroblastes en un phenotype présentant une capacité accrue de synthèse protéiques, nommés myofibroblastes. Ceci résulte en une accumulation excessive des constituants de la matrice extracellulaire, ou autrement dit fibrose. En raison de son effet délétère sur la contractilité du coeur, menant sur le long terme à une insuffisance cardiaque, de nombreux efforts ont été déployés, afin de définir les mécanismes moléculaires impliqués dans la réponse profibrotique. A ce jour, de nombreuses études indiquent que la petite GTPase RhoA pourrait être un médiateur important de la réponse profibrotique du myocarde. Cependant, les facteurs d'échanges impliqués dans la transduction de signaux profibrotiques, via la régulation de son activité au niveau des fibroblastes cardiaques, n'ont pas encore été identifiés. De précédentes études menées dans le laboratoire, ont identifiées une nouvelle protein d'ancrage de la PKA, exprimée majoritairement dans le coeur, nommée AKAP-Lbc. Il a été montré que cette protéine, en plus de sa fonction de protein d'ancrage, possédait une activité de facteur d'échange de nucléotide guanine (GEF) pour la petite GTPase RhoA. Au niveau des cardiomyocytes, il a été montré que l'AKAP-Lbc participe à une voie de signalisation pro-hypertrophique, incluant la sous-unité alpha de la protéine G hétérotrimerique G12 et RhoA. Chose intéressante, des observations antérieures à cette étude, indiquent que dans le coeur, l'AKAP-Lbc est également exprimée dans les fibroblastes. Cependant aucunes études n'a encore reporté de fonction pour ce facteur d'échange dans les fibroblastes cardiaques. Dans ce travail, les résultats obtenus indiquent que dans les fibroblastes cardiaques, I'activation de RhoA par l'AKAP-Lbc est impliquée dans la transmission de signaux profibrotiques, en aval des récépteurs à l'angiotensine II. En particulier, nous avons observé que la suppression de l'expression de l'AKAP-Lbc dans les fibroblastes ventriculaires de rat adultes, réduisait fortement Γ activation de Rho induite par l'angiotensine II, la déposition de collagène, la capacité migratoire des fibroblastes ainsi que leur différenciation en myofibroblastes. A notre connaissance, l'AKAP-Lbc est le premier RhoGEF identifié comme médiateur de la réponse profibrotique dans les fibroblastes cardiaques. - In pathological conditions such as chronic hypertension or myocardial infarction, the myocardium is subjected to various biomechanical and biochemical stresses, and undergoes an adverse ventricular remodelling process associated with cardiomyocytes hypertrophy and excess deposition of extracellular matrix proteins resulting in fibrosis. During the fibrotic response, cardiac fibroblasts differentiate into a more mobile and contractile phenotype termed myofibroblasts. These cells, possess a greater synthetic ability to produce ECM proteins and have been implicated in diseases with increased ECM deposition including cardiac fibrosis. Because fibrosis impairs myocardial contractility and is associated with the progression to heart failure, a major cause of lethality worldwide, many efforts have been made to define the molecular players involved in this process. During these last years, increasing evidence suggests a role for the small GTPase RhoA in mediating the fibrotic response in CFbs. However the identity of the exchange factors that modulate its activity and transduce fibrotic signals in CFbs is still unknown. Earlier work in our laboratory identified a novel PKA anchoring protein expressed in the heart termed AKAP-Lbc that has been shown to function as anchoring protein as well as a guanine nucleotide exchange factor (GEF) for the small GTPase RhoA. In response to several hypertrophic stimuli we have shown that RhoGEF activity of AKAP-Lbc mediated by Gan promotes the activation of a signaling pathway including RhoA, leading to cardiomyocytes hypertrophy. Within the heart, previous observations made in the laboratory indicated that AKAP-Lbc was also expressed in fibroblasts. However its role in cardiac fibroblasts remained to be determined. In the present study, we show that AKAP-Lbc is critical for activating RhoA and transducing profibrotic signals downstream of angiotensin II receptors in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin RNAs strongly reduces angiotensin II-induced RhoA activation, collagen deposition as well as cell migration and differentiation. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor involved in a profibrotic signalling pathway at the level of cardiac fibroblasts.
Resumo:
Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.
Resumo:
Polarized tip growth is a fundamental cellular process in many eukaryotic organisms, mediating growth of neuronal axons and dendrites or fungal hyphae. In plants, pollen and root hairs are cellular model systems for analysing tip growth. Cell growth depends on membrane traffic. The regulation of this membrane traffic is largely unknown for tip-growing cells, in contrast to cells exhibiting intercalary growth. Here we show that in Arabidopsis, GBF1-related exchange factors for the ARF GTPases (ARF GEFs) GNOM and GNL2 play essential roles in polar tip growth of root hairs and pollen, respectively. When expressed from the same promoter, GNL2 (in contrast to the early-secretory ARF GEF GNL1) is able to replace GNOM in polar recycling of the auxin efflux regulator PIN1 from endosomes to the basal plasma membrane in non-tip growing cells. Thus, polar recycling facilitates polar tip growth, and GNL2 seems to have evolved to meet the specific requirement of fast-growing pollen in higher plants.
Resumo:
Drosophila GoLoco motif-containing protein Pins is unusual in its highly efficient interaction with both GDP- and the GTP-loaded forms of the α-subunit of the heterotrimeric Go protein. We analysed the interactions of Gαo in its two nucleotide forms with GoLoco1-the first of the three GoLoco domains of Pins-and the possible structures of the resulting complexes, through combination of conventional fluorescence and FRET measurements as well as through molecular modelling. Our data suggest that the orientation of the GoLoco1 motif on Gαo significantly differs between the two nucleotide states of the latter. In other words, a rotation of the GoLoco1 peptide in respect with Gαo must accompany the nucleotide exchange in Gαo. The sterical hindrance requiring such a rotation probably contributes to the guanine nucleotide exchange inhibitor activity of GoLoco1 and Pins as a whole. Our data have important implications for the mechanisms of Pins regulation in the process of asymmetric cell divisions.