976 resultados para Growth. Reduction
Resumo:
Os herbicidas, mesmo quando usados em doses reduzidas ou utilizados como maturadores, podem alterar a morfofisiologia da planta, o que pode levar a modificações qualitativas e quantitativas na produção. O presente estudo objetivou avaliar a eficiência agronômica e os efeitos, durante o crescimento da cana-soca, da aplicação de glyphosate e sulfometuron-methyl em baixas doses. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Os tratamentos foram constituídos pelos herbicidas sulfometuron-methyl e glyphosate em diferentes doses e misturas e por uma testemunha (sem aplicação dos produtos). Uma linha de plantas de cana-de-açúcar foi destinada à aferição da qualidade tecnológica, sendo estabelecido 1 m aleatório a cada época de amostragem. Os colmos coletados foram submetidos ao desponte na altura da gema apical e à desfolha; em seguida, foram encaminhados para processamento segundo a metodologia do Sistema de Pagamento de Cana pelo Teor de Sacarose (SPCTS), sendo considerados os parâmetros tecnológicos: pol cana (PCC), pureza do caldo (PUI), açúcar total recuperável (ATR) e Brix. Nas soqueiras de cana-de-açúcar, realizaram-se análises de crescimento (altura e perfilhos). As avaliações foram realizadas na pré-colheita (30 dias após aplicação dos maturadores) e 30, 60, 90, 120, 150 e 180 dias após a colheita. Os herbicidas glyphosate e sulfometuron-methyl propiciaram melhoria da qualidade tecnológica da matéria-prima,com incrementos significativos na pureza do caldo e no Brix. A aplicação dos produtos não interferiu na produtividade e no teor de açúcar. Houve efeito estimulante no perfilhamento quando se usou glyphosate na dose de 400 mL ha-1 e redução em crescimento (altura) no início do desenvolvimento da cana, porém, com o tempo, o efeito não se manteve.
Resumo:
Gibberellin inhibitor growth regulators are used for cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield losses. However, under temperatures below or over the optimum for cotton production the effect of mepiquat chloride (MC) has not always been significant. In this experiment, cotton plants were grown in growth chambers to study the response to MC as affected by temperature and to determine if an increase in dose could overcome the temperature effects. Mepiquat chloride was applied at rates of 0, 15 and 30 g ai ha-1 at the pinhead square stage. Plants were then grown under three temperature regimes: 25/15 °C, 32/22 °C, and 39/29 °C (day/night temperatures) for 51 days. Higher temperatures increased plant height, reproductive branches, fruit number, fruit abscission, and photosynthesis per unit area, but decreased leaf area and chlorophyll. The largest effect of MC on plant height was observed when the daily temperature was 32 °C, with nights of 22 °C, which was also best for plant growth. High temperatures not only decreased the effectiveness of MC on plant height control, but also caused lower dry matter and fruit number per plant. Low temperatures (25/15 ºC) decreased cotton growth and fruit retention, but a higher concentration of MC was required per unit of growth reduction as compared with 32/22 ºC. At high temperatures, the rate of MC to be applied must be disproportionately increased, because either plant growth is impaired by high temperature lessening the effect of MC, or degradation of MC within the plant is too rapid.
Resumo:
O presente trabalho teve como objetivo avaliar os efeitos da aplicação de duas doses de trinexapac-ethyl sobre a morfologia das espécies de gramas São Carlos (Axonopus compressus), Batatais (Paspalum notatum), Santo Agostinho (Stenotaphrum secundatum) e Esmeralda (Zoysia japonica). Os gramados foram cortados à altura de 3 cm no início do experimento e 20 dias depois. Após cada corte, foram realizadas duas aplicações sequenciais de trinexapac-ethyl nas doses de 56,5 + 56,5 e 113,0 + 113,0 g ha-1 , além de uma testemunha sem aplicação, para cada espécie avaliada. O delineamento experimental utilizado foi o de blocos ao acaso com quatro repetições. A redução do crescimento foi avaliada por meio da altura das plantas. Semanalmente, o número e altura de inflorescências foram avaliados por amostragem, realizada em 0,25 m² no centro das parcelas; no final do experimento, avaliou-se a massa seca total. A aplicação do trinexapac-ethyl retardou o crescimento vegetativo e a emissão das inflorescências, assim como não provocou danos aparentes nos gramados. O uso do trinexapac-ethyl nos gramados avaliados pode reduzir a necessidade de cortes em até 55 dias após a segunda aplicação.
Resumo:
In order to improve the current chemotherapy of Giardia infection, potential antigiardial agents have been screened, including natural products. Propolis, a resinous hive product collected by bees, has attracted attention as a useful and popular substance with several therapeutic activities. The present study was carried out aiming to evaluate the in vitro effects of an ethanolic extract of propolis on the growth and adherence of Giardia duodenalis trophozoites. Propolis inhibited the growth of trophozoites and the level of inhibition varied according to the extract concentration and incubation times. The highest reduction of parasite growth was observed in cultures exposed to 125, 250 and 500 mu g/ml of propolis, in all incubation periods (24, 48, 72 and 96 h). Growth reduction by 50% was observed in 125 mu g/ml propolis-treated cultures, while the concentrations of 250 and 500 mu g/ml were able to inhibit growth by more than 60%. Propolis also inhibited parasite adherence and all assayed propolis concentrations promoted the detachment of trophozoites. Light microscope observations revealed changes of the pear-shaped aspect of the cell and reduction of flagellar beating frequency in the great part of the trophozoites. Our results hold the perspective for the utilization of propolis as an antigiardial agent. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.
Resumo:
Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.
Resumo:
In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs.
Resumo:
Alopecurus aequalis Sobol. is a common grass weed, which has become increasingly troublesome to control in China wheat fields. One A. aequalis population, collected from Anhui Province China, was suspected to be resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl. This study aimed to establish the cross-resistance pattern using the purified subpopulation and explore the potential targetsite and non-target-site based resistance mechanisms. Sequencing results showed that a single nucleotide change of ATT to AAT was present in acetyl-CoA carboxylase (ACCase) gene of the resistant (R) plants, resulting in an Ile2041Asn amino acid substitution. Besides, another single nucleotide change of CCC to CGC was present in acetolactate synthase (ALS) gene of the R plants, resulting in a Pro197Arg amino acid substitution. The homozygous resistant plants were isolated and the seeds were used in whole-plant herbicide bioassays. Compared with the susceptible (S) population, R population displayed high level resistance to fenoxaprop-P-ethyl and mesosulfuronmethyl. Cross resistance patterns showed that the R population was highly resistant to clodinafop-propargyl, moderately resistant to pyroxsulam and flucarbazoncsodium, lowly resistant to pinoxaden, and susceptible to tralkoxydim, sethoxydim, and isoproturon. The pretreatment of piperonyl butoxide reduced the 50% growth reduction (GR50) value of fenoxaprop-P-ethyl, suggesting that target-site resistance and non-target-site resistance mechanisms were both present in fenoxaprop- P-ethyl-resistance of A. aequalis. This is the first report of ACCase Ile2041Asn and ALS Pro197Arg mutation in A. aequalis.
Resumo:
Beech bark disease (BBD), a non-native association of the fungal pathogen Neonectria faginata and the beech scale insect Cryptococcus fagisuga, has dramatically affected American beech within North American forests. To monitor the spread and effects of BBD in Michigan, a network of forest health monitoring plots was established in 2001 following the disease discovery in Ludington State Park (Mason County). Forest health canopy condition and basic forestry measurements including basal area were reassessed on beech trees in these plots in 2011 and 2012. The influence of bark-inhabiting fungal endophytes on BBD resistance was investigated by collecting cambium tissue from apparently resistant and susceptible beech. Vigor rating showed significant influences of BBD in sample beech resulting in reduced health and substantiated by significant increases of dead beech basal area over time. C. fagisuga distribution was found to be spatially clustered and widespread in the 22 counties in Michigan's Lower Peninsula which contained monitoring plots. Neonectria has been found in Emmet, Cheboygan and Wexford in the Lower Peninsula which may coincide with additional BBD introduction locations. Surveys for BBD resistance resulted in five apparently resistant beech which were added to a BBD resistance database. The most frequently isolated endophytes from cambium tissue were identified by DNA sequencing primarily as Deuteromycetes and Ascomycetes including Chaetomium globosum, Neohendersonia kickxii and Fusarium flocciferum. N. faginata in antagonism trials showed significant growth reduction when paired with three beech fungal endophytes. The results of the antagonism trial and decay tests indicate that N. faginata may be a relatively poor competitor in vivo with limited ability to degrade cellulose.
Resumo:
Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-β (TGF-β). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-β T. cruzi, or SB-431542, an inhibitor of TGF-β receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-β signalling had been shown previously to be highly activated. We demonstrated that TGF-β treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-β secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-β levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease.
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.