970 resultados para Growth-factor-beta-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To analyze components of the deposits in the corneal flap interface of granular corneal dystrophy type II (GCD II) patients after laser in situ keratomileusis (LASIK). METHODS: Four corneal GCD II specimens displaying disease exacerbation after LASIK were analyzed. Three of these specimens included the recipient corneal button after penetrating keratoplasty or deep lamellar keratoplasty for advanced GCD II after LASIK. The fourth specimen, a similar case of GCD II after LASIK, included the amputated corneal flap. Specimens were processed for histopathologic and immunohistochemical analyses. RESULTS: Corneal stromal deposits in the LASIK flaps of all specimens were stained with 3 anti-transforming growth factor-beta-induced protein (TGFBIp) antibodies. The deposits displayed bright red color staining with Masson trichrome; however, negative staining was seen with Congo red, suggesting that hyaline is the main component localizing to the TGFBIp deposits rather than amyloid. CONCLUSIONS: Amorphous granular material deposited along the interface of the LASIK flap in GCD II corneas is composed mainly of hyaline deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gene therapy has been recently introduced as a novel approach to treat ischemic tissues by using the angiogenic potential of certain growth factors. We investigated the effect of adenovirus-mediated gene therapy with transforming growth factor-beta (TGF-beta) delivered into the subdermal space to treat ischemically challenged epigastric skin flaps in a rat model. MATERIAL AND METHODS: A pilot study was conducted in a group of 5 animals pretreated with Ad-GFP and expression of green fluorescent protein in the skin flap sections was demonstrated under fluorescence microscopy at 2, 4, and 7 days after the treatment, indicating a successful transfection of the skin flaps following subdermal gene therapy. Next, 30 male Sprague Dawley rats were divided into 3 groups of 10 rats each. An epigastric skin flap model, based solely on the right inferior epigastric vessels, was used as the model in this study. Rats received subdermal injections of adenovirus encoding TGF-beta (Ad-TGF-beta) or green fluorescent protein (Ad-GFP) as treatment control. The third group (n = 10) received saline and served as a control group. A flap measuring 8 x 8 cm was outlined on the abdominal skin extending from the xiphoid process proximally and the pubic region distally, to the anterior axillary lines bilaterally. Just prior to flap elevation, the injections were given subdermally in the left upper corner of the flap. The flap was then sutured back to its bed. Flap viability was evaluated seven days after the initial operation. Digital images of the epigastric flaps were taken and areas of necrotic zones relative to total flap surface area were measured and expressed as percentages by using a software program. RESULTS: There was a significant increase in mean percent surviving area between the Ad-TGF-beta group and the two other control groups (P < 0.05). (Ad-TGF-beta: 90.3 +/- 4.0% versus Ad-GFP: 82.2 +/- 8.7% and saline group: 82.6 +/- 4.3%.) CONCLUSIONS: In this study, the authors were able to demonstrate that adenovirus-mediated gene therapy using TGF-beta ameliorated ischemic necrosis in an epigastric skin flap model, as confirmed by significant reduction in the necrotic zones of the flap. The results of this study raise the possibility of using adenovirus-mediated TGF-beta gene therapy to promote perfusion in random portion of skin flaps, especially in high-risk patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Marfan syndrome (MFS) is caused by mutations in the fibrillin-1 gene and dysregulation of transforming growth factor-beta (TGF-beta). Recent evidence suggests that losartan, an angiotensin II type 1 blocker that blunts TGF-beta activation, may be an effective treatment for MFS. We hypothesized that dysregulation of TGF-beta might be mirrored in circulating TGF-beta concentrations. METHODS AND RESULTS: Serum obtained from MFS mutant mice (Fbn1(C1039G/+)) treated with losartan was analyzed for circulating TGF-beta1 concentrations and compared with those from placebo-treated and wild-type mice. Aortic root size was measured by echocardiography. Data were validated in patients with MFS and healthy individuals. In mice, circulating total TGF-beta1 concentrations increased with age and were elevated in older untreated Fbn1(C1039G/+) mice compared with wild-type mice (P=0.01; n=16; mean+/-SEM, 115+/-8 ng/mL versus n=17; mean+/-SEM, 92+/-4 ng/mL). Losartan-treated Fbn1(C1039G/+) mice had lower total TGF-beta1 concentrations compared with age-matched Fbn1(C1039G/+) mice treated with placebo (P=0.01; n=18; 90+/-5 ng/mL), and circulating total TGF-beta1 levels were indistinguishable from those of age-matched wild-type mice (P=0.8). Correlation was observed between circulating TGF-beta1 levels and aortic root diameters in Fbn1(C1039G/+) and wild-type mice (P=0.002). In humans, circulating total TGF-beta1 concentrations were elevated in patients with MFS compared with control individuals (P<0.0001; n=53; 15+/-1.7 ng/mL versus n=74; 2.5+/-0.4 ng/mL). MFS patients treated with losartan (n=55) or beta-blocker (n=80) showed significantly lower total TGF-beta1 concentrations compared with untreated MFS patients (P< or =0.05). CONCLUSIONS: Circulating TGF-beta1 concentrations are elevated in MFS and decrease after administration of losartan, beta-blocker therapy, or both and therefore might serve as a prognostic and therapeutic marker in MFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To isolate and characterize effector molecules of the transforming growth factor beta (TGFbeta) signaling pathway we have used a genetic approach involving the generation of stable recessive mutants, defective in their TGFbeta signaling, which can subsequently be functionally complemented to clone the affected genes. We have generated a cell line derived from a hypoxanthine-guanine phosphoribosyltransferase negative (HPRT-) HT1080 clone that contains the selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) linked to a TGFbeta-responsive promoter. This cell line proliferates or dies in the appropriate selection medium in response to TGFbeta. We have isolated three distinct TGFbeta-unresponsive mutants following chemical mutagenesis. Somatic cell hybrids between pairs of individual TGFbeta-unresponsive clones reveal that each is in a distinct complementation group. Each mutant clone retains all three TGFbeta receptors yet fails to induce a TGFbeta-inducible luciferase reporter construct or TGFbeta-mediated plasminogen activator inhibitor-1 (PAI-1) expression. Two of the three have an attenuated TGFbeta-induced fibronectin response, whereas in the other mutant the fibronectin response is intact. These TGFbeta-unresponsive cells should allow selection and identification of signaling molecules through functional complementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor beta 3 (TGF-beta 3) are members of the TGF-beta superfamily with high neurotrophic activity on cultured nigral dopamine neurons. We investigated the effects of intracerebral administration of GDNF and TGF-beta 3 on the delayed cell death of the dopamine neurons in the rat substantia nigra following 6-hydroxydopamine lesions of dopaminergic terminals in the striatum. Fluorescent retrograde tracer injections and tyrosine hydroxylase immunocytochemistry demonstrated nigral degeneration with an onset 1 week after lesion, leading to extensive death of nigral neurons 4 weeks postlesion. Administration of recombinant human GDNF for 4 weeks over the substantia nigra at a cumulative dose of 140 micrograms, starting on the day of lesion, completely prevented nigral cell death and atrophy, while a single injection of 10 micrograms 1 week postlesion had a partially protective effect. Continuous administration of TGF-beta 3, starting on the day of lesion surgery, did not affect nigral cell death or atrophy. These findings support the notion that GDNF, but not TGF-beta 3, is a potent neurotrophic factor for nigral dopamine neurons in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120(ctn), also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.