439 resultados para Grout (Mortar)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contributes to the understanding of lime-mortar masonry strength and deformation (which determine durability and allowable stresses/stiffness in design codes) by measuring the mechanical properties of brick bound with lime and lime-cement mortars. Based on the regression analysis of experimental results, models to estimate lime-mortar masonry compressive strength are proposed (less accurate for hydrated lime (CL90s) masonry due to the disparity between mortar and brick strengths). Also, three relationships between masonry elastic modulus and its compressive strength are proposed for cement-lime; hydraulic lime (NHL3.5 and 5); and hydrated/feebly hydraulic lime masonries respectively.

Disagreement between the experimental results and former mathematical prediction models (proposed primarily for cement masonry) is caused by a lack of provision for the significant deformation of lime masonry and the relative changes in strength and stiffness between mortar and brick over time (at 6 months and 1 year, the NHL 3.5 and 5 mortars are often stronger than the brick). Eurocode 6 provided the best predictions for the compressive strength of lime and cement-lime masonry based on the strength of their components. All models vastly overestimated the strength of CL90s masonry at 28 days however, Eurocode 6 became an accurate predictor after 6 months, when the mortar had acquired most of its final strength and stiffness.

The experimental results agreed with former stress-strain curves. It was evidenced that mortar strongly impacts masonry deformation, and that the masonry stress/strain relationship becomes increasingly non-linear as mortar strength lowers. It was also noted that, the influence of masonry stiffness on its compressive strength becomes smaller as the mortar hydraulicity increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grouts used in sealing or backfilling boreholes should ideally be selected to be compatible with the insitu field instruments installed in the borehole and also be engineered to match closely the geotechnical properties of the parent soils. A stable grout can be made using cement with various proportions of bentonite. The grout stability is very important during both the liquid and set conditions. The liquid grout fluidity should be as viscous as possible to avoid segregation, yet fluid enough to be easily pumpable and fill voids and over-break in the borehole. This paper investigates the effect of bentonite on the fresh and rheological properties of cement-based grouts in order to develop a stable grout to be used in these geotechnical situations. These properties were evaluated by the mini-slump flow, marsh cone flow time, Lombardi plate cohesion meter, static bleeding, yield stress and plastic viscosity values. Additionally, the compressive strength at 3 days, 7 days and 28 days were also investigated. The key parameters investigated were the dosages of bentonite and water-to-binder ratio (W/B). Test results showed that the dosage of bentonite had a significant effect on the fluidity, rheological properties and compressive strength of grout. The increase in the dosage of bentonite led to increasing the values of flow time, plate cohesion meter, yield stress and plastic viscosity, and reducing the mini-slump results, the static bleeding and the compressive strength at 3 days, 7 days and 28 days. Conversely, the increase in W/B led to decreasing the values of flow time, plate cohesion meter, yield stress, and plastic viscosity and the compressive strength, while increasing the mini-slump results and bleeding. Some recommendations for suitable mix proportions for use in soil boreholes are made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Letter to J.P. Bradley from George Grout of Grimsby regarding the sale of the land which Bradley is renting. This land is in Quebec and is was owned by Grout’s father. , Feb. 10, 1847

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region specific. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their CO2 footprints by 84% when buying standard consumer electronics products. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region specific. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their CO2 footprints by 84% when buying standard consumer electronics products.