996 resultados para Grinding process


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several machining processes have been created and improved in order to achieve the best results ever accomplished in hard and difficult to machine materials. Some of these abrasive manufacturing processes emerging on the science frontier can be defined as ultra-precision grinding. For finishing flat surfaces, researchers have been putting together the main advantages of traditional abrasive processes such as face grinding with constant pressure, fixed abrasives for two-body removal mechanism, total contact of the part with the tool, and lapping kinematics as well as some specific operations to keep grinding wheel sharpness and form. In the present work, both U d-lap grinding process and its machine tool were studied aiming nanometric finishing on flat metallic surfaces. Such hypothesis was investigated on AISI 420 stainless steel workpieces U d-lap ground with different values of overlap factor on dressing (Ud=1, 3, and 5) and grit sizes of conventional grinding wheels (silicon carbide (SiC)=#800, #600, and #300) applying a new machine tool especially designed and built for such finishing. The best results, obtained after 10 min of machining, were average surface roughness (Ra) of 1.92 nm, 1.19-μm flatness deviation of 25.4-mm-diameter workpieces, and mirrored surface finishing. Given the surface quality achieved, the U d-lap grinding process can be included among the ultra-precision abrasive processes and, depending on the application, the chaining steps of grinding, lapping, and polishing can be replaced by the proposed abrasive process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

系统地研究了光学研磨过程中,磨料粒径、载荷大小以及机床转速对钕玻璃表面及亚表面损伤的影响。结果表明,机床转速和载荷基本不改变材料表面粗糙度,而较大载荷或较低机床转速产生较大的亚表面缺陷,表面粗糙度和亚表面缺陷缺陷深度基本与最大磨料粒径呈正比,载荷增倍使亚表面缺陷与表面粗糙度的常数比值增加0.05。研究结果为钕玻璃加工工艺改进提供了参考依据。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]Cada vez más industrias como las aeronáuticas o espaciales buscan nuevos materiales con excelentes propiedades hoy en día. Sin embargo, estos materiales suelen presentar hándicaps como por ejemplo su maquinabilidad. Mediante este TFG, se estudiará el rectificado de uno de estos materiales, el Inconel 718. Para conseguir los objetivos, este TFG se elaborará en varias etapas. Primero es necesario conocer las propiedades del Inconel 718 y analizarlas. Tras esto, se realizará el mismo proceso con el proceso de rectificado, haciendo hincapié en el desgaste de muelas; para finalmente, encontrar soluciones y alternativas que optimicen el proceso de rectificado. La ejecución de este TFG permitirá comprender y minimizar el desgaste de las muelas durante el proceso de rectificado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the relation between the thickness of sapphire substrates and the extraction efficiency of LED. The increasing about 5% was observed in the simulations and experiments when the sapphire thickness changed from 100um to 200um. But the output power increasing is inconspicuous when the thickness is more than 200um. The structure on bottom face of sapphire substrates can enhance the extraction efficiency of GaN-based LED, too. The difference of output power between the flip-chip LED with smooth bottom surface and the LED with roughness bottom surface is about 50%, where only a common sapphire grinding process is used. But for those LEDs grown on patterned sapphire substrate the difference is only about 10%. Another kind of periodic pattern on the bottom of sapphire is fabricated by the dry etch method, and the output of the back-etched LEDs is improved about 50% than a common. case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了一种基于粒子群算法优化(PSO)的模糊控制器,对模糊控制器参数进行全局优化,以弥补模糊控制器参数在线调节方面的不足,并应用于球磨机粉磨系统的控制中。控制系统采用粒子群优化模糊控制器作为双闭环控制中的成品流量控制器,并在Matlab/Simulink进行的仿真分析中实现模糊控制器参数的在线调节。仿真结果表明,系统较好地实现了给定参考轨迹自适应跟踪,具有鲁棒性强、控制精度高等优点。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nas últimas duas décadas, as cerâmicas avançadas têm sido exaustivamente utilizadas em aplicações na indústria devido às suas propriedades de elevada resistência ao desgaste e dureza. Entretanto, ainda se tem um alto custo agregado ao acabamento da peça. Esse acabamento geralmente é feito pelo processo de retificação, único processo economicamente viável que produz superfícies de elevada qualidade e precisão geométrica. Nesse contexto, as empresas vêm buscando a otimização no processo de retificação como, por exemplo, a redução do fluxo de fluido de corte utilizado, o que também visa atender exigências mundiais de preservação ambiental. Desta forma, este projeto pretendeu explorar a técnica da Mínima Quantidade de Lubrificação (MQL) na retificação cilíndrica externa de mergulho em cerâmicas com rebolos diamantados. Foram utilizados dois métodos de refrigeração: o convencional e o MQL, com três avanços de corte para cada caso. Foram usados um bocal convencional e um bocal para o MQL, tendo este um uniformizador de saída do jato. Foram analisadas como variáveis de saída: a emissão acústica, relação G, aspecto da superfície via microscopia eletrônica de varredura (MEV), rugosidade e circularidade. Assim, embora a refrigeração convencional ainda apresente os melhores resultados em comparação com a refrigeração com MQL, esta última pode atender os requisitos necessários para diversas aplicações, em especial quando utilizadas baixas espessuras equivalentes de corte (h eq). Além disso, a técnica de MQL possui a vantagem de gerar um menor impacto ambiental em comparação com a lubrificação convencional, devido ao uso mínimo de fluido de corte cujo descarte é cada vez mais regulamentado e custoso.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)