981 resultados para Greenhouse gas fluxes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to current and increasing demand for assurance on greenhouse gas statements, the International Auditing and Assurance Standards Board (IAASB) released an exposure draft of a new assurance standard, ISAE 3410 'Assurance on a Greenhouse Gas Statement' (IFAC 2011), to provide comprehensive guidance on these types of greenhouse gas (GHG) assurance engagements. Internationally, approximately 50 percent of GHG statements are independently assured. The related assurance market is competitive, with the accounting profession and those outside the profession currently holding approximately equal shares. This paper highlights the characteristics of GHG assurance engagements that warrant multi-disciplinary teamwork, the unique and interdependent skill-sets that different practitioners bring to these engagements, and the market forces that create a demand for diverse providers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide public concern over climate change and the need to limit greenhouse gas (hereafter, GHG) emissions has increasingly motivated public officials to consider more stringent environmental regulation and standards. The authors argue that the development of a new international assurance standard on GHG disclosures is an appropriate response by the auditing and assurance profession to meet these challenges. At its December 2007 meeting, the International Auditing and Assurance Standards Board (hereafter, IAASB) approved a project to consider the development of such a standard aimed at promoting trust and confidence in disclosures of GHG emissions, including disclosures required under emissions trading schemes. The authors assess the types of disclosures that can be assured, and outline the issues involved in developing an international assurance standard on GHG emissions disclosures. The discussion synthesizes the insights gained from four international roundtables on the proposed IAASB assurance standard held in Asia-Pacific, North America, and Europe during 2008, and an IAASB meeting addressing this topic in December 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthy governance systems are key to delivering effective outcomes in any broad domain of natural resource management (NRM). One of Australia's emerging NRM governance domains is our national framework for greenhouse gas abatement (GGA), as delivered through a wide range of management practices in the Australian landscape. The emerging Landscape-Based GGA Domain represents an innovative governance space that straddles both the nation's broader NRM Policy and Delivery Domain and Australia's GGA Domain. As a point-in-time benchmark, we assess the health of this hybrid domain as it stood at the end of 2013. At that time, the domain was being progressed through the Australian government's Clean Energy Package and, more particularly, its Carbon Farming Initiative (CFI). While significant changes are currently under development by a new Australian government, this paper explores key areas of risk within the governance system underpinning this emerging hybrid domain at that point in time. We then map some potential reform or continuous improvement pathways required (from national to paddock scale) with the view to securing improved landscape outcomes over time through widespread GGA activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated the impact of organic sources of nutrients on greenhouse gas emissions (carbon dioxide, nitrous oxide and methane), nitrogen use efficiency and biomass production in subtropical cropping soils. The study was conducted in two main soil types in subtropical ecosystems, sandy loam soil and clay soil, with a variety of organic materials from agro-industrial residues and crop residues. It is important for recycling of agro-industrial residues and agricultural residues and the mitigation of greenhouse gas emissions and nitrogen use efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current research proposal will conduct a review of measurement techniques and recommendation for a suite of techniques to be used in method and measurement protocol development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feeding to increase productivity and reduce greenhouse gas emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For accurate calculation of reductions in greenhouse-gas (GHG) emissions, methodologies under the Australian Government's Carbon Farming Initiative (CFI) depend on a valid assessment of the baseline and project emissions. Life-cycle assessments (LCAs) clearly show that enteric methane emitted from the rumen of cattle and sheep is the major source of GHG emissions from livestock enterprises. Where a historic baseline for a CFI methodology for livestock is required, the use of simulated data for cow-calf enterprises at six sites in southern Australia demonstrated that a 5-year rolling emission average will provide an acceptable trade off in terms of accuracy and stability, but this is a much shorter time period than typically used for LCA. For many CFI livestock methodologies, comparative or pair-wise baselines are potentially more appropriate than historic baselines. A case study of lipid supplementation of beef cows over winter is presented. The case study of a control herd of 250 cows used a comparative baseline derived from simple data on livestock numbers and class of livestock to quantify the emission abatement. Compared with the control herd, lipid supplementation to cows over winter increased livestock productivity, total livestock production and enterprise GHG emissions from 990 t CO2-e to 1022 t CO2-e. Energy embodied in the supplement and extra diesel used in transporting the supplement diminished the enteric-methane abatement benefit of lipid supplementation. Reducing the cow herd to 238 cows maintained the level of livestock production of the control herd and reduced enterprise emissions to 938 t CO2-e, but was not cost effective under the assumptions of this case study.