973 resultados para Gray level gap length


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the longitudinal effects of anti-resorptive agents (534 treated women vs. 1,150 untreated) on lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). TBS was responsive to treatment in women over age 50. The treatment-related increase in TBS was less than the increase in BMD, which is consistent with bone texture preservation. INTRODUCTION: In addition to inducing an increase in BMD, anti-resorptive agents also help to preserve bone architecture. TBS, a new gray-level texture measurement, correlates with 3D parameters of bone micro-architecture independent of BMD. Our objective was to evaluate the longitudinal effects of anti-resorptive agents on lumbar spine BMD and TBS. METHODS: Women (≥50 years), from the BMD program database for the province of Manitoba, Canada, who had not received any anti-resorptive drug prior to their initial dual X-ray absorptiometry (DXA) exam were divided into two groups: untreated, those without any anti-resorptive drug over the course of follow-up, and treated, those with a non-estrogen anti-resorptive drug (86 % bisphosphonates, 10 % raloxifene, and 4 % calcitonin). Lumbar spine TBS was calculated for each lumbar spine DXA examination. Changes in TBS and BMD between baseline and follow-up (mean follow-up 3.7 years), expressed in percentage per year, were compared between the two groups. RESULTS: A total of 1,150 untreated women and 534 treated women met the inclusion criteria. Only a weak correlation was seen between BMD and TBS in either group. Significant intergroup differences in BMD change and TBS change were observed over the course of follow-up (p < 0.001). Similar mean decreases in BMD and TBS (-0.36 %/year and -0.31 %/year, respectively) were seen for untreated subjects (both p < 0.001). Conversely, treated subjects exhibited a significant mean increase in BMD (+1.86 %/year, p < 0.002) and TBS (+0.20 %/year, p < 0.001). CONCLUSION: TBS is responsive to treatment with non-estrogen anti-resorptive drug therapy in women over age 50. The treatment-related increase in TBS is less than the increase in BMD, which is consistent with bone texture preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrast enhancement is an image processing technique where the objective is to preprocess the image so that relevant information can be either seen or further processed more reliably. These techniques are typically applied when the image itself or the device used for image reproduction provides poor visibility and distinguishability of different regions of interest inthe image. In most studies, the emphasis is on the visualization of image data,but this human observer biased goal often results to images which are not optimal for automated processing. The main contribution of this study is to express the contrast enhancement as a mapping from N-channel image data to 1-channel gray-level image, and to devise a projection method which results to an image with minimal error to the correct contrast image. The projection, the minimum-error contrast image, possess the optimal contrast between the regions of interest in the image. The method is based on estimation of the probability density distributions of the region values, and it employs Bayesian inference to establish the minimum error projection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tietokoneiden vuosi vuodelta kasvanut prosessointikyky mahdollistaa spektrikuvien hyö- dyntämisen harmaasävy- ja RGB-värikuvien sijaan yhä useampien ongelmien ratkaisemi- sessa. Valitettavasti häiriöiden suodatuksen tutkimus on jäänyt jälkeen tästä kehityksestä. Useimmat menetelmät on testattu vain harmaasävy- tai RGB-värikuvien yhteydessä, mut- ta niiden toimivuutta ei ole testattu spektrikuvien suhteen. Tässä diplomityössä tutkitaan erilaisia menetelmiä bittivirheiden poistamisessa spektrikuvista. Uutena menetelmänä työssä käytetään kuutiomediaanisuodatinta ja monivaiheista kuutio- mediaanisuodatinta. Muita tutkittuja menetelmiä olivat vektorimediaanisuodatus, moni- vaiheinen vektorimediaanisuodatus, sekä rajattu keskiarvosuodatus. Kuutiosuodattimilla pyrittiin hyödyntämään spektrikuvien kaistojen välillä olevaa korrelaatiota ja niillä pääs- tiinkin kokonaisuuden kannalta parhaisiin tuloksiin. Kaikkien suodattimien toimintaa tutkittiin kahdella eri 224 komponenttisella spektriku- valla lisäämällä kuviin satunnaisia bittivirheitä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Trabecular bone score (TBS) is a DXA-based tool that assesses bone texture and reflects microarchitecture. It has been shown to independently predict the risk of osteoporotic fracture in the elderly. In this study, we investigated the determinants of TBS in adolescents. INTRODUCTION: TBS is a gray-level textural measurement derived from lumbar spine DXA images. It appears to be an index of bone microarchitecture that provides skeletal information additional to the standard BMD measurement and clinical risk factors. Our objectives were to characterize the relationship between TBS and both age and pubertal stages and identify other predictors in adolescents. METHODS: We assessed TBS by reanalyzing spine DXA scan images obtained from 170 boys and 168 girls, age range 10-17 years, gathered at study entry and at 1 year, using TBS software. The results are from post hoc analyses obtained using data gathered from a prospective randomized vitamin D trial. Predictors of TBS were assessed using t test or Pearson's correlation and adjusted using regression analyses, as applicable. RESULTS: The mean age of the study population was 13.2 ± 2.1 years, similar between boys and girls. Age, height, weight, sun exposure, spine BMC and BMD, body BMC and BMD, and lean and fat mass are all significantly correlated with TBS at baseline (r = 0.20-0.75, p < 0.035). Correlations mostly noted in late-pubertal stages. However, after adjustment for BMC, age remained an independent predictor only in girls. CONCLUSIONS: In univariate exploratory analyses, age and pubertal stages were determinants of TBS in adolescents. Studies to investigate predictors of TBS and to investigate its value as a prognostic tool of bone fragility in the pediatric population are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our study was to assess the diagnostic usefulness of the gray level parameters to distinguish osteolytic lesions using radiological images. Materials and Methods: A retrospective study was carried out. A total of 76 skeletal radiographs of osteolytic metastases and 67 radiographs of multiple myeloma were used. The cases were classified into nonflat (MM1 and OL1) and flat bones (MM2 and OL2). These radiological images were analyzed by using a computerized method. The parameters calculated were mean, standard deviation, and coefficient of variation (MGL, SDGL, and CVGL) based on gray level histogram analysis of a region-of-interest.Diagnostic utility was quantified bymeasurement of parameters on osteolyticmetastases andmultiplemyeloma, yielding quantification of area under the receiver operating characteristic (ROC) curve (AUC). Results: Flat bone groups (MM2 and OL2) showed significant differences in mean values of MGL ( = 0.048) and SDGL ( = 0.003). Their corresponding values of AUC were 0.758 for MGL and 0.883 for SDGL in flat bones. In nonflat bones these gray level parameters do not show diagnostic ability. Conclusion: The gray level parametersMGL and SDGL show a good discriminatory diagnostic ability to distinguish between multiple myeloma and lytic metastases in flat bones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed tomography (CT) images are routinely used to assess ischemic brain stroke in the acute phase. They can provide important clues about whether to treat the patient by thrombolysis with tissue plasminogen activator. However, in the acute phase, the lesions may be difficult to detect in the images using standard visual analysis. The objective of the present study was to determine if texture analysis techniques applied to CT images of stroke patients could differentiate between normal tissue and affected areas that usually go unperceived under visual analysis. We performed a pilot study in which texture analysis, based on the gray level co-occurrence matrix, was applied to the CT brain images of 5 patients and of 5 control subjects and the results were compared by discriminant analysis. Thirteen regions of interest, regarding areas that may be potentially affected by ischemic stroke, were selected for calculation of texture parameters. All regions of interest for all subjects were classified as lesional or non-lesional tissue by an expert neuroradiologist. Visual assessment of the discriminant analysis graphs showed differences in the values of texture parameters between patients and controls, and also between texture parameters for lesional and non-lesional tissue of the patients. This suggests that texture analysis can indeed be a useful tool to help neurologists in the early assessment of ischemic stroke and quantification of the extent of the affected areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problématique : La quantification de l’intégrité du tendon d’Achille (TA) représente un défi en réadaptation. L’adoption de mesures quantitatives du TA, extraites à partir d’une image ultrasonographique (QUS), pourrait remédier à cette lacune. Objectifs : 1) Évaluer la fiabilité test-retest et la précision de mesures QUS du TA; 2) Déterminer le meilleur protocole de collecte de mesures QUS à employer en pratique clinique. Méthodologie : Un total de 23 TAs présentant des symptômes d’une tendinopathie achilléenne et 63 TAs asymptomatiques ont été évalués. Pour chaque TA, 8 images ont été enregistrées (2 visites * 2 évaluatrices * 2 images). Différents types de mesures QUS ont été prises : géométriques (épaisseur, largeur, aire), dérivées d’un histogramme des niveaux de gris et dérivées d’une matrice de co-occurrence. Une étude de généralisabilité a quantifié la fiabilité et la précision de chaque mesure QUS et une étude de décision a fait ressortir les meilleurs protocoles de prise de mesures. Résultats : Les mesures géométriques ont démontré une excellente fiabilité et précision. Les mesures dérivées de l’histogramme des niveaux de gris ont démontré une fiabilité et précision médiocres. Les mesures dérivées d’une matrice de co-occurrence ont démontré une fiabilité modérée à excellente et une précision variable. En pratique clinique, il est recommandé de moyenner les résultats de trois images collectées par un évaluateur lors d’une visite. Conclusion : L’utilisation des mesures QUS géométriques permet de quantifier l’intégrité du TA (clinique et recherche). Davantage d’études sur les mesures QUS dérivées d’une matrice de co-occurrence s’avèrent nécessaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation and finding the corner density in each partition. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). Euclidean distance measure is used for computing the distance between the features of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.