979 resultados para Gravity waves.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The ocean bottom pressure records from eight stations of the Cascadia array are used to investigate the properties of short surface gravity waves with frequencies ranging from 0.2 to 5 Hz. It is found that the pressure spectrum at all sites is a well-defined function of the wind speed U10 and frequency f, with only a minor shift of a few dB from one site to another that can be attributed to variations in bottom properties. This observation can be combined with the theoretical prediction that the ocean bottom pressure spectrum is proportional to the surface gravity wave spectrum E(f) squared, times the overlap integral I(f) which is given by the directional wave spectrum at each frequency. This combination, using E(f) estimated from modeled spectra or parametric spectra, yields an overlap integral I(f) that is a function of the local wave age inline image. This function is maximum for f∕fPM = 8 and decreases by 10 dB for f∕fPM = 2 and f∕fPM = 30. This shape of I(f) can be interpreted as a maximum width of the directional wave spectrum at f∕fPM = 8, possibly equivalent to an isotropic directional spectrum, and a narrower directional distribution toward both the dominant low frequencies and the higher capillary-gravity wave frequencies.
Resumo:
By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.
Resumo:
To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called ``fast'') gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers (Fr) considered (0.05 a parts per thousand currency sign Fr a parts per thousand currency sign 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.
Resumo:
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. it is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, wo; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation.f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higtter harmonics but also increases the wave strength in the direction of basic flow. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Resumo:
A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.
Resumo:
The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.
Resumo:
Wavenumber-frequency spectral analysis and linear wave theory are combined in a novel method to quantitatively estimate equatorial wave activity in the tropical lower stratosphere. The method requires temperature and velocity observations that are regularly spaced in latitude, longitude and time; it is therefore applied to the ECMWF 15-year re-analysis dataset (ERA-15). Signals consistent with idealized Kelvin and Rossby-gravity waves are found at wavenumbers and frequencies in agreement with previous studies. When averaged over 1981-93, the Kelvin wave explains approximately 1 K-2 of temperature variance on the equator at 100 hPa, while the Rossby-gravity wave explains approximately 1 m(2)s(-2) of meridional wind variance. Some inertio-gravity wave and equatorial Rossby wave signals are also found; however the resolution of ERA-15 is not sufficient for the method to provide an accurate climatology of waves with high meridional structure.
Resumo:
We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.