709 resultados para Graphitic steels
Resumo:
A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).
Resumo:
Lithium iron phosphate (LiFePO4) electronically wired by multi-walled carbon nanotubes (MWCNTs) and in-situ transformed graphitic carbon for lithium-ion batteries are discussed here. Presence of MWCNTs up to a maximum of 0.5% in porous LiFePO4 (abbreviated as LFP-CNT) resulted in remarkable reversible cyclability and rate capability compared to LFP coated with highly disordered carbon (abbreviated as LFP-C). In the current range (30-1500) mAg(-1), specific capacity of LFP-CNT (approximate to 150-50 mAhg(-1)) is observed to be always higher compared to LFP-C (approximate to 120-0 mAhg(-1)). At higher currents of 250-1500 mAg(-1) LFP-C performed poorly compared to LFP-CNT. LFP-C showed considerable decay in capacity with increase in cycle number at intermediate high currents (approximate to 250 mAg(-1)) whereas at very high currents (approximate to 750 mAg(-1)) it is nearly zero. The LFP-CNT showed no such detrimental behavior in battery performance. The exemplary performance of the LFP-CNT is attributed to combination of both enhanced LFP structural stability, as revealed by Raman spectra and formation of an efficient percolative network of carbon nanotubes which during the course of galvanostatic cycling gets gradually transformed to graphitic carbon. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.015204jes] All rights reserved.
Resumo:
The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.
Resumo:
The impact of high enthalpy shock wave on graphitic carbon nanoparticle (GCNP) films has been investigated and discussed in view of space and chemical engineering applications. The GCNP films were developed by using spray method and exposed to high enthalpy shock wave under an inert atmosphere. Upon shock wave treatment, two typical amendments such as weight loss in the deposited material and growth of second order nanostructures (SONS) have been observed. While increasing test gas pressure, the loss of material and density of SONs are gradually increased. Most of the shock wave induced SONS are highly crystalline and belong to the cubic diamond structure. Upon shock treatment as well as with increase of test gas pressure, a considerable improvement in the quality of GCNP films has been observed. Further, ablation of GCNPs exclusively on the top surface of the coatings and formation of hierarchical NPs (diamond NPs on GCNPs) has been observed.
Resumo:
This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared.
Resumo:
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.
Resumo:
Stainless steels are among the most investigated materials on biofouling and microbially-influenced corrosion (MIC). Although, generally corrosion-resistant owing to tenacious and passive surface film due to chromium, stainless steels are susceptible to extensive biofouling in subsoil, fresh water and sea water and chemical process environments. Biofilms influence their corrosion behavior due to corrosion potential ennoblement and sub-surface pitting. Both aerobic and anaerobic microorganisms catalyse microbial corrosion of stainless steels through biotic and abiotic mechanisms. MIC of stainless steels is common adjacent to welds at the heat-affected zone. Both austenite and delta ferrite phases may be susceptible. Even super stainless steels are found to be amenable to biofouling and MIC. Microbiological, electrochemical as well as physicochemical aspects of MIC pertaining to stainless steels in different environments are analyzed.
Resumo:
A method to estimate the Hall-Petch coefficient k for yield strength and flow stress of steels through nanoindentation experiments is proposed. While determination of k(f) for flow stress is on the basis of grain boundary strengthening evaluated by sharp indentation, k(y) for yield strength was computed with pop-in data from spherical indentations. Good agreement between estimated and literature data, obtained from the tensile tests, validates the proposed methodology. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Density reduction of automotive steels is needed to reduce fuel consumption, thereby reducing greenhouse gas emissions. Aluminum addition has been found to be effective in making steels lighter. Such an addition does not change the crystal structure of the material. Steels modified with aluminum possess higher strength with very little compromise in ductility. In this work, different compositions of Fe-Al systems have been studied so that the desired properties of the material remain within the limit. A density reduction of approximately 10% has been achieved. The specific strength of optimal Fe-Al alloys is higher than conventional steels such as ultra-low-carbon steels.
Resumo:
In this paper the effects of crystallographic texture and microstructure on the elastic modulus of different grades of steel have been collected from the available literature and put in one place. It is expected that this will help researchers in their understanding of both the fundamental and the practical aspects of the different grades of steel used for various purposes.
Resumo:
Martensite-ferrite microstructures were produced in four microalloyed steels A (Fe-0.44C-Cr-V), B (Fe-0.26C-Cr-V), C (Fe-0.34C-Cr-Ti-V), and D (Fe-0.23C-Cr-V) by intercritical annealing. SEM analysis reveals that steels A and C contained higher martensite fraction and finer ferrite when compared to steels B and D which contained coarser ferrite grains and lower martensite fraction. A network of martensite phase surrounding the ferrite grains was found in all the steels. Crystallographic texture was very weak in these steels as indicated by EBSD analysis. The steels contained negligible volume fraction of retained austenite (approx. 3-6%). TEM analysis revealed the presence of twinned and lath martensite in these steels along with ferrite. Precipitates (carbides and nitrides) of Ti and V of various shapes with few nanometers size were found, particularly in the microstructures of steel B. Work hardening behavior of these steels at ambient temperature was evaluated through modified Jaoul-Crussard analysis, and it was characterized by two stages due to presence of martensite and ferrite phases in their microstructure. Steel A displayed large work hardening among other steel compositions. Work hardening behavior of the steels at a warm working temperature of 540 A degrees C was characterized by a single stage due to the decomposition of martensite into ferrite and carbides at this temperature as indicated by SEM images of the steels after warm deformation.
Resumo:
We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.
Resumo:
We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.
Resumo:
A mechanical model of a laser transformation hardening specimen with a crack in the middle of the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on crack driving force in terms of J-integral. It is assumed