998 resultados para Graphite furnace atomic absorption spectrometry
Resumo:
A method has been developed for the direct determination of Cu, Cd, Ni and Pb in aquatic humic substances (AHS) by graphite furnace atomic absorption spectrometry. AHS were isolated from water samples rich in organic matter, collected in the Brazilian Ecological Parks. All analytical curves presented good linear correlation coefficient. The limits of detection and quantification were in the ranges 2.5-16.7 mu g g(-1) and 8.5-50.0 mu g g(-1), respectively. The accuracy was determined using recovery tests, and for all analytes recovery percentages ranged from 93 - 98 %, with a relative standard deviation less than 4 %. The results indicated that the proposed method is a suitable alternative for the direct determination of metals in AHS.
Resumo:
2014
Resumo:
Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference material was conducted using atomic absorption spectrometry (AAS), namely, hydride generation AAS (HGAAS) and graphite furnace (GFAAS). The samples were digested with HNO3–H2O2 in a ratio of 4:1 using microwaveassisted acid digestion. The methods were validated with the aid of the standard reference material 1515 Apple Leaves (SRM) from NIST Results: Mean recovery of three different samples of NHPs, using HGAAS and GFAAS, ranged from 89.3 - 91.4 %, and 91.7 - 93.0 %, respectively. The difference between the two methods was insignificant. A (P= 0.5), B (P=0.4) and C (P=0.88) Relative standard deviation (RSD) RSD, i.e., precision was 2.5 - 6.5 % and 2.3 - 6.7 % using HGAAS and GFAAS techniques, respectively. Recovery of arsenic in SRM was 98 and 102 % by GFAAS and HGAAS, respectively. Conclusion: GFAAS demonstrates acceptable levels of precision and accuracy. Both techniques possess comparable accuracy and repeatability. Thus, the two methods are recommended as an alternative approach for trace analysis of arsenic in natural herbal products.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 mu g L(-1), with a detection limit estimated as 3 mu g L(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111 % range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simple procedure for the sequential determination of Cd, Cu and Pb in tea leaves by slurry introduction to thermospray flame furnace atomic absorption spectrometry was developed. Detection limits were 0.05 mg kg-1 for Cd, 2.1 mg kg-1 for Cu and 0.68 mg kg-1 for Pb using 0.67 % (m/v) slurries (100 mg/15 mL). © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method was developed for quantification of Cd and Pb in ethanol fuel by filter furnace atomic absorption spectrometry. Filter furnace was used to eliminate the need for chemical modification, to stabilize volatile analytes and to allow the application of short pyrolysis step. The determinations in samples were carried out against calibration solutions prepared in ethanol. Recovery tests were made in seven commercial ethanol fuel samples with values between 90 and 120%. Limits of detection were 0.1 µg L-1 for Cd and 0.3 µg L-1 for Pb. Certified water samples (APS 1071, APS 1033, NIST 1643d, NIST 1640) were also used to evaluate accuracy and recoveries from 86.8% to115% were obtained.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaqa) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(NO3)(2). Pyrolysis and atomization temperature curves were established in a cachaqa medium (1+1; v/v) containing 0.2% (v/v) HNO3 and spiked with 20 mu g L-1 As and Pb and 200 mu g L-1 Cu. The effect of the concentration of major elements usually present in cachaqa matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 mu g L-1 As, 9.2 mu g L-1 Cu, and 0.3 pig L-1 Pb. The found concentrations varied from 0.81 to 4.28 mu g L-1 As, 0.28 to 3.82 mg L-1 Cu and 0.82 to 518 mu g L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 mu g L-1, 0.81 mg L-1, and 38.9 mu g L-1 concentrations.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaça) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(N03)2. Pyrolysis and atomization temperature curves were established in a cachaça medium (1+1; v/v) containing 0.2% (v/v) HN03 and spiked with 20 μg L-1 As and Pb and 200 μg L-1Cu. The effect of the concentration of major elements usually present in cachaça matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 μg L-1As, 9.2 μg L-1 Cu, and 0.3 μg L-1Pb. The found concentrations varied from 0.81 to 4.28 μg L-1As, 0.28 to 382 mg L-1 Cu and 0.82 to 518 μg L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 μgL-1, 0.81 mgL-1, and 38.9 μgL-1concentrations.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.