957 resultados para Graphic ProcessingUnits, GPUs
Resumo:
This project is concerned with the way that illustrations, photographs, diagrams and graphs, and typographic elements interact to convey ideas on the book page. A framework for graphic description is proposed to elucidate this graphic language of ‘complex texts’. The model is built up from three main areas of study, with reference to a corpus of contemporary children’s science books. First, a historical survey puts the subjects for study in context. Then a multidisciplinary discussion of graphic communication provides a theoretical underpinning for the model; this leads to various proposals, such as the central importance of ratios and relationships among parts in creating meaning in graphic communication. Lastly a series of trials in description contribute to the structure of the model itself. At the heart of the framework is an organising principle that integrates descriptive models from fields of design, literary criticism, art history, and linguistics, among others, as well as novel categories designed specifically for book design. Broadly, design features are described in terms of elemental component parts (micro-level), larger groupings of these (macro-level), and finally in terms of overarching, ‘whole book’ qualities (meta-level). Various features of book design emerge at different levels; for instance, the presence of nested discursive structures, a form of graphic recursion in editorial design, is proposed at the macro-level. Across these three levels are the intersecting categories of ‘rule’ and ‘context’, offering different perspectives with which to describe graphic characteristics. Contextbased features are contingent on social and cultural environment, the reader’s previous knowledge, and the actual conditions of reading; rule-based features relate to the systematic or codified aspects of graphic language. The model aims to be a frame of reference for graphic description, of use in different forms of qualitative or quantitative research and as a heuristic tool in practice and teaching.
Resumo:
This article is an analysis and reflection on the role of lists and diagrams in Start where you are, a multimedia improvisational piece performed as part of square zero independent dance festival: the second edition/la deuxième édition. This interdisciplinary festival was organised by collective (gulp) dance projects and took place in Ottawa, Canada, in August 2005. Start where you are was the result of a collaboration between the authors: two dance artists (Andrew and MacKinnon, the principals of (gulp)) and a visual communication designer (Gillieson). A sound artist and a lighting technician also participated in the work. This is a post-performance retrospective meant to analyze more closely the experience that meshed the evidentiary weight of words and graphics with the ephemerality and subjectivity of movement-based live performance. It contextualizes some of the work of collective (gulp) within a larger tradition of improvisation in modern dance. It also looks at how choice-making processes are central to improvisation, how they relate to Start, and how linguistic material can intersect with and support improvisational performance. Lastly, it examines some characteristics of lists and diagrams, unique forms of visual language that are potentially rich sources of material for improvisation.
Resumo:
Simulating spiking neural networks is of great interest to scientists wanting to model the functioning of the brain. However, large-scale models are expensive to simulate due to the number and interconnectedness of neurons in the brain. Furthermore, where such simulations are used in an embodied setting, the simulation must be real-time in order to be useful. In this paper we present NeMo, a platform for such simulations which achieves high performance through the use of highly parallel commodity hardware in the form of graphics processing units (GPUs). NeMo makes use of the Izhikevich neuron model which provides a range of realistic spiking dynamics while being computationally efficient. Our GPU kernel can deliver up to 400 million spikes per second. This corresponds to a real-time simulation of around 40 000 neurons under biologically plausible conditions with 1000 synapses per neuron and a mean firing rate of 10 Hz.
Resumo:
This is a study of graphic information designed for Future Books/Future magazine (UK) and Fortune magazine (USA) in the years immediately after the Second World War. It highlights work made by the Isotype Institute for Future, which is then situated against contributions by Abram Games and F. H. K. Henrion. Similar work in Fortune under the art editorship of Will Burtin is discussed in a parallel account, drawing on examples by him and by others including György Kepes, Matthew Liebowitz, Alex Steinweiss and Ladislav Sutnar. Attention is drawn to links and relationships between to the two periodicals and the graphic information published in both. Further comparisons are made between underlying editorial and design strategies pursued by Otto Neurath (Isotype Institute) and Will Burtin. An argument is made for recognising the little-known innovations of Future alongside the long-acknowledged innovations of Fortune.
Resumo:
The study investigated early years teachers’ understanding and use of graphic symbols, defined as the visual representation(s) used to communicate one or more “linguistic” concepts, which can be used to facilitate science learning. The study was conducted in Cyprus where six early years teachers were observed and interviewed. The results indicate that the teachers had a good understanding of the role of symbols, but demonstrated a lack of understanding in regards to graphic symbols specifically. None of the teachers employed them in their observed science lesson, although some of them claimed that they did so. Findings suggest a gap in participants’ acquaintance with the terminology regarding different types of symbols and a lack of awareness about the use and availability of graphic symbols for the support of learning. There is a need to inform and train early years teachers about graphic symbols and their potential applications in supporting children’s learning.
Resumo:
Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Design, Grafiskt program, Symbol, Hair
Resumo:
The degree project has been implemented abroad in Brisbane, Australia. A literature study has beenperformed parallel to the practical work within the subject »Corporate identity through graphicaldesign«. In this study deeper research has been made concerning the establishment and manifestationof a corporate identity and its program. The knowledge given from this study has been put into practicethrough two larger projects.The first project was carried out at De Pasquale, advertising agency in Brisbane, where a corporateidentity program was designed for a new company. The company is a fitness centre, called KnockoutFitness, which specializes in different types of boxing training sessions such as Boxing, Thai Bow andBoxercise but also Aqua aerobics. They needed a full corporate identity program including a logotype,business card, letter paper-paper and address labels.The second project was carried out at Queensland University of Technology in Brisbane. A promotioncampaign was designed for the Department of Visual Arts, which included two information folders andone advertisement. The purpose of the campaign was to promote both the undergraduate and postgraduatecourses offered within the department.
Resumo:
Syftet med denna studie var att undersöka hur digitala nomader utövar sitt yrke som grafiska designers, varför de valde att bli digitala nomader samt vilka fördelar och nackdelar som finns. Totalt intervjuades 10 före detta och nuvarande digitala nomader via email och svaren sammanställdes och analyserades för att finna teman och sammanhang. Resultatet visar att deltagarna valde en digital nomadisk livsstil främst på grund av den frihet det innebär. De är även helt beroende av internet, då det är den grundläggande teknologin som möjliggör distansarbete. Att vara digital nomad verkar inte ha en negativ inverkan på den grafiska designprocessen och alla verktyg som behövs anser de finns tillgängliga digitalt. Den del av det traditionella designyrket på en byrå som deltagarna i studien saknade mest var kreativa diskussioner med kollegor.
Resumo:
Summer Graphic Design workshops Co-sponsored by the Continuing Education Division and the Graphic Design Dept. Schedule C & D, three weeks each, tuition $550-$650.00, New Times in London $1,735.00