1000 resultados para Gramineae
Resumo:
Surface pollen assemblages and their relationhips with the modern vegetation and climate provide a foundation for investigating palaeo-environment conditions by fossil pollen analysis. A promising trend of palynology is to link pollen data more closely with ecology. In this study, I summarized the characteristics of surface pollen assemblages and their quantitative relation with the vegetation and climate of the typical ecological regions in northern China, based on surface pollen analysis of 205 sites and investigating of modern vegetation and climate. The primary conclusions are as follows:The differences in surface pollen assemblages for different vegetation regions are obvious. In the forest communities, the arboreal pollen percentages are more than 30%, herbs less than 50% and shrubs less than 10%; total pollen concentrations are more than 106 grains/g. In the steppe communities, arboreal pollen percentages are generally less than 5%; herb pollen percentages are more than 90%, and Artemisia and Chenopodiaceae are dominant in the pollen assemblages; total pollen concentrations range from 103 to 106 grains/g. In the desert communities, arboreal pollen percentages are less than 5%. Although Chenopodiaceae and Artemisia still dominate the pollen assemblages, Ephedra, Tamaricaceae and Nitraria are also significant important in the pollen assemblages; total pollen concentrations are mostly less than 104grains/g. In the sub-alpine or high and cold meadow communities, arboreal pollen percentages are less than 30%. and Cyperaceae is one of the most significant-taxa in the pollen assemblages. In the shrub communities, the pollen assemblages are consistent with the zonal vegetation; shrub pollen percentages are mostly less than 20%, except for Artemisia and Hippophae rhamnoides communities.There are obvious trends for the pollen percentage ratios of Artemisia to Chenopodiaceae (A/C), Pinus to Artemisia (P/A) and arbor to non-arbor (AP/NAP) in the different ecological regions. In the temperate deciduous broad-leaved forest region, the P/A ratios are generally higher than 0.1, the A/C ratios higher than 2 and the AP/NAP ratios higher than 0.3. In the temperate steppe regions, the P/A ratios are generally less than 0.1, the A/C ratios higher than 1 and the AP/NAP ratios less than 0.1. In the temperate desert regions, the P/A ratios are generally less than 0.1, the A/C ratios less than 1, and the AP/NAP ratios less than 0.1.The study on the representation and indication of pollen to vegetation shows that Pinus, Artemisia, Betula, Chenopodiaceae, Ephedra, Selaginella sinensis etc. are over-representative in the pollen assemblages and can only indicate the regional vegetation. Some pollen types, such as Quercus, Carpinus, Picea, Abies, Elaeagus, Larix, Salix, Pterocelis, Juglans, Ulmus, Gleditsia, Cotinus, Oleaceae, Spiraea, Corylus, Ostryopsis, Vites, Tetraena, Caragana, Tamaricaceae, Zygophyllum, Nitraria, Cyperaceae, Sanguisorba etc. are under-representative in the pollen assemblages, and can indicate the plant communities well. Populus, Rosaceae, Saxifranaceae, Gramineae, Leguminosae, Compositae, Caprifoliaceae etc. can not be used as significant indicators to the plants.The study on the relation of pollen percentages with plant covers shows that Pinus pollen percentages are more than 30% where pine trees exist in the surrounding region. The Picea+Abies pollen percentages are higher than 20% where the Picea+Abies trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Larix pollen percentages vary from 5% to 20% where the Larix trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Betula pollen percentages are higher than 40% where the Betula trees are dominant in the communities" but less than 5% where the parent plants are sparse or absent. Quercus pollen percentages are higher than 10% where the Quercus trees are dominant in the communities, but less than 1% where the parent plants sparse or absent. Carpinus pollen percentages vary from 5% to 15% where the Carpinus trees are dominant in the communities, but less than 1% where the parent plants are sparse or absent. Populus pollen percentages are about 0-5% at pure Populus communities, but cannot be recorded easily where the Populus plants mixed with other trees in the communities. Juglans pollen accounts for 25% to 35% in the forest of Juglans mandshurica, but less than 1% where the parent plants are sparse or absent. Pterocelis pollen percentages are less than 15% where the Pterocelis trees are dominant in the communities, but cannot be recorded easily where the parent plants are sparse or absent. Ulmus pollen percentages are more than 8% at Ulmus communities, but less than 1% where the Ulmus plants mixed with other trees in the communities. Vitex pollen percentages increase along with increasing of parent plant covers, but the maximum values are less than 10 %. Caragana pollen percentages are less than 20 % where the Caragana plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent. Spiraea pollen percentages are less than 16 % where the Spiraea plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent.The study on the relation of surface pollen assemblages with the modern climate shows that, in the axis 1 of DCA, surface samples scores have significant correlation with the average annual precipitations, and the highest determination coefficient (R2) is 0.8 for the fitting result of the third degree polynomial functions. In the axis 2 of DCA, the samples scores have significant correlation with the average annual temperatures, average July temperatures and average January temperatures, and the determination coefficient falls in 0.13-0.29 for the fitting result of the third degree polynomial functions with the highest determination coefficient for the average July temperature.The sensitivity of the different pollen taxa to climate change shows that some pollen taxa such as Pinus, Quercus, Carpinus, Juglans, Spiraea, Oleaceae, Gramineae, Tamariaceae and Ephedra are only sensitive to the change in precipitation.
Resumo:
Three soil spots were found in Grove Mountains, east Antarctica during 1999-2000, when the Chinare 16th Antarctic expedition teams entered the inland Antarctica. The characteristics of soils in Grove Mountains are desert pavement coating the surface, abundant water soluble salt, negligible organ matter, and severe rubification and salinization, scarces of liquid water, partly with dry permafrost, corresponding with the soils of McMurdo, Transantarctic. The soils age of Grove Mountains is 0.5-3.5Ma. Podzolization and redoximorphism are the main features in coastal Wilks region, in addition, there is strong enrichment of organic matter in many soils of this region. The main soil processes of Fildes Peninsula of King George Island include the intense physical weathering, decalcification and weakly biochemical processes. Peat accumulation is the main processes in Arctic because of humid and cold environment.Based on synthesis of heavy minerals, particle size, quartz grain surface textures, as well as pollen in soils, the soils parent materials of Grove Mountains derived from alluvial sediment of the weathering bedrocks around soils, and formed during the warm period of Pliocene. The detailed information is followed .l)The results of heavy minerals particle size showed the parent minerals derived form the weathering bedrocks around soils. 2)The quartz sand surface textures include glacial crushing and abrasion such as abrasive conchoidal fractures and grain edges, abrasive subparallel linear fractures and angularity, subaqueous environments produce V-shaped and irregular impact pits, polished surface, and chemical textures, such as beehive solution pits, which showed the water is the main force during the sediment of the soil parent minerals. 3)The pollen consist of 40 plant species, of which at least 5 species including Ranunculaceae, Chenopodiaceae, Artemisia, Gramineae, Podocarpus belong to the Neogene vegetation except the species from the old continent. Compared with Neogene vegetation of Transantarctic Mountains, Antarctic, we concluded that they grow in warm Pliocene.
Resumo:
J. A. Gallagher, A. J. Cairns and C. J. Pollock (2004). Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. Journal of Experimental Botany, 55 (397) pp.557-569 Sponsorship: BBSRC RAE2008
Resumo:
The aim of this study is to explore the environmental factors that determine plant Community distribution in northeast Algeria. This paper provides a quantitative analysis of the vegetation-environment relationships for a study site in the Cholt El Beida wetland, a RAMSAR site in Setif, Algeria. Sixty vegetation plots were sampled and analysed using TWINSPAN and Detrended Correspondence Analysis (DCA) in order to identify the principal vegetation communities and determine the environmental gradients associated with these. 127 species belonging to 41 families and 114 genera were recorded. Six of the recorded species were endemic representing 4.7% of the total species. The richest families were Compositae, Gramineae, Cruciferae and Chenopodiaceae. Therophytes and hemicryptophytes were the most frequent life forms. the Mediterranean floristic element is dominant and is represented by 39 species. The samples were classified into four main community types. The principal DCA axes represent gradients of soil salinity, moisture and anthropogenic pressure. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in often critically endangered Mediterranean wetland areas. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study is to explore the environmental factors that determine plant Community distribution in northeast Algeria. This paper provides a quantitative analysis of the vegetation-environment relationships for a study site in the Cholt El Beida wetland, a RAMSAR site in Setif, Algeria. Sixty vegetation plots were sampled and analysed using TWINSPAN and Detrended Correspondence Analysis (DCA) in order to identify the principal vegetation communities and determine the environmental gradients associated with these. 127 species belonging to 41 families and 114 genera were recorded. Six of the recorded species were endemic representing 4.7% of the total species. The richest families were Compositae, Gramineae, Cruciferae and Chenopodiaceae. Therophytes and hemicryptophytes were the most frequent life forms. the Mediterranean floristic element is dominant and is represented by 39 species. The samples were classified into four main community types. The principal DCA axes represent gradients of soil salinity, moisture and anthropogenic pressure. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in often critically endangered Mediterranean wetland areas. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.
Resumo:
O gênero Paspalum L. compreende aproximadamente 400 espécies no mundo e cerca de 220 no Brasil. Paspalum é ecologicamente e economicamente importante e tem sido utilizado como pastagem. Paspalum notatum Flügge (grama-forquilha) é uma valorosa gramínea forrageira nos subtrópicos. Esta espécie consiste de vários biótipos sexuais (diplóides) e apomíticos (tetraplóides, ocasionalmente tri e pentaplóides). Neste trabalho, os Inter Simple Sequence repeat (ISSR) foram utilizados para acessar a diversidade genética da grama-forquilha (Paspalum notatum). Os tecidos vegetativos de 95 acessos de grama-forquilha foram obtidos de vários locais da América do Sul (Brasil, Argentina e Uruguai). Um total de 91 de fragmentos reproduzível ISSR foi observado. Oitenta e nove fragmentos (97,5% do total observado) foram polimórficos. A análise de agrupamento (UPGMA) foi realizada para o conjunto de dados ISSR. Os resultados ilustram as relações genéticas entre 95 acessos de Paspalum notatum. A comparação entre dados moleculares, morfológicos e nível de ploidia foi realizada. Em resumo, os marcadores moleculares ISSR mostraram-se eficientes para distinção dos genótipos analisados e observou-se uma variabilidade ampla para a espécie. Estes resultados adicionam novas informações sobre a diversidade genética em Paspalum notatum, conseqüentemente contribuindo para o conhecimento biológico desta espécie e fornecendo subsídios para futuros programas de melhoramento genético e para programas de conservação.
Resumo:
A utilização de sementes para formação de gramados esportivos e ornamentais tem assumido grande importância no Brasil, principalmente pelo baixo custo em relação à formação por placas de tapetes naturais. As bermudas [Cynodon dactylon (L.) Pers] são as principais gramas utilizadas na formação de campos esportivos e, dentre os problemas enfrentados, destaca-se a dificuldade de estabelecimento adequado da cultura, fato que exige a utilização de sementes de alto potencial fisiológico, de modo a permitir rápida emergência e desenvolvimento das plantas. Assim, estudaram-se procedimentos para a condução do teste de envelhecimento acelerado para determinar o potencial fisiológico de sementes dessa espécie, incluindo a avaliação da eficiência do uso de solução saturada de NaCl como alternativa para a realização do teste. Para tanto, cinco lotes de sementes foram submetidos aos testes de germinação, emergência de plântulas e envelhecimento acelerado (períodos de 48, 72 e 96 h, a 41 e 45 ºC, com e sem o uso de solução saturada de NaCl). O experimento foi conduzido em delineamento inteiramente casualizado. O envelhecimento acelerado com o uso de solução saturada de NaCl, dentre os procedimentos estudados, é o método mais adequado para avaliação do potencial fisiológico de sementes de grama-bermuda, sendo que a combinação 45 ºC/48 h é eficiente para a classificação dos lotes em diferentes níveis de vigor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
RESUMO O conhecimento relativo ao diásporo e ao desenvolvimento pós-seminal de Paspalum L. é importante para a conservação da biodiversidade dos campos, devido sua importância na representatividade e no melhoramento genético de pastagens. A morfologia do diásporo e do desenvolvimento pós-seminal de Paspalum dilatatum Poir. (rizomatosa); P. mandiocanum Trin. var. subaequiglume Barreto (estolonífera), P. pumilum Nees. (cespitosa decumbente) e P. urvillei Steud. (cespitosa ereta) foi descrita procurando distinguir as espécies com diferentes formas de crescimento, e levantar características úteis para a taxonomia. P. dilatatum se diferencia por apresentar diásporo oval, de maior tamanho que as demais, com cinco nervuras salientes e tricomas; P. urvillei por apresentar diásporo com uma nervura central mais desenvolvida do que as duas nervuras laterais e tricomas; P. mandiocanum var. subaequiglume por apresentar diásporo com tricomas apenas na margem; e P. pumilum por apresentar diásporo glabro. A cariopse envolve a semente que apresenta embrião diferenciado, disposto lateralmente; apresenta hilo elíptico em todas as espécies estudadas e rostelo em P. dilatatum e P. mandiocanum var. subaequiglume. O desenvolvimento pós-seminal é semelhante nas quatro espécies e se inicia com a germinação, que é marcada pela emergência da coleorriza, seguida pelo coleóptilo. Essas características são comuns às demais Poaceae já estudadas, indicando um padrão para a família e não diferenciam as formas de crescimento.
Resumo:
Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.