978 resultados para Gluon Schwinger-Dyson Equation
Resumo:
This dissertation analyses the influence of sugar-phosphate structure in the electronic transport in the double stretch DNA molecule, with the sequence of the base pairs modeled by two types of quasi-periodic sequences: Rudin-Shapiro and Fibonacci. For the sequences, the density of state was calculated and it was compared with the density of state of a piece of human DNA Ch22. After, the electronic transmittance was investigated. In both situations, the Hamiltonians are different. On the analysis of density of state, it was employed the Dyson equation. On the transmittance, the time independent Schrödinger equation was used. In both cases, the tight-binding model was applied. The density of states obtained through Rudin-Shapiro sequence reveal to be similar to the density of state for the Ch22. And for transmittance only until the fifth generation of the Fibonacci sequence was acquired. We have considered long range correlations in both transport mechanism
Resumo:
The possibility that the QCD coupling constant (alpha(s)) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the frozen QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment.
Resumo:
We present a nonperturbative study of the (1 + 1)-dimensional massless Thirring model by using path integral methods. The regularization ambiguities - coming from the computation of the fermionic determinant - allow to find new solution types for the model. At quantum level the Ward identity for the 1PI 2-point function for the fermionic current separates such solutions in two phases or sectors, the first one has a local gauge symmetry that is implemented at quantum level and the other one without this symmetry. The symmetric phase is a new solution which is unrelated to the previous studies of the model and, in the nonsymmetric phase there are solutions that for some values of the ambiguity parameter are related to well-known solutions of the model. We construct the Schwinger-Dyson equations and the Ward identities. We make a detailed analysis of their UV divergence structure and, after, we perform a nonperturbative regularization and renormalization of the model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bb̄), ψ(cc̄)), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results. © 2010 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonper-turbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c) with two and four symmetric Dirac flavors.
Resumo:
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.
Resumo:
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case, we find D(0)=0, in agreement with Maas. We suggest an explanation for these results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Resumo:
Recently the paper ""Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field"" by G. C. Nayak was published [Eur. Phys. J. C 59: 715, 2009; arXiv:0708.2430]. Its aim is to obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum in an arbitrary time-dependent chromo-electric background field. We believe that the obtained expression is open to question. We demonstrate its inconsistency on some well-known examples. We think that this is a consequence of using the socalled ""shift theorem""[arXiv:hep-th/0609192] in deriving the expression for the probability. We make some critical comments on the theorem and its applicability to the problem in question.