32 resultados para Gluconacetobacter diazotrophicus
Resumo:
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific facose and/or galactose residues.
Resumo:
O objetivo deste trabalho foi avaliar a localização e o numero de bactérias endolíticas em quatro genótipos de cana-de-açúcar e investigar sobre a possível existência de correlação com os resultados apresentados em trabalhos de quantificação da fixação biológica de nitrogênio (FBN). Fez-se um levantamento das bactérias diazotróficas presentes, e quantificou-se a população de Herbaspirillum spp. E Acetobacter diazotrophicus, em genótipos de cana-de-açúcar contrastantes quanto a capacidade de obter N da FBN. De acordo com o levantamento realizado neste trabalho, as bactérias estudadas (Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. e Acetobacter diazotrophicus) estavam presentes nos quatro genotipos avaliados e em todas as partes da planta, exceto A. amazonense, que nao foi isolado de amostras de folhas. A quantificaçãoo das bactérias Herbaspirillum spp. e A. diazotrophicus mostrou não haver diferenças significativas entre os genótipos, e que, geralmente, elas estão presentes em maior numero nas raízes. Enquanto Herbaspirillum spp. mantêm-se mais estável ao longo do ciclo da cultura, a população de A. diazotrophicus decresce com a aproximação do final do ciclo comercial. Pode-se sugerir que as diferenças entre as taxas de FBN encontradas nos diversos genótipos não e causada por diferenças na presença ou no numero das bactérias aqui estudadas The objective of this work was to find out the localization and number of endophytic bacteria in four sugar cane genotypes and investigate upon the possible existence of correlation to the results obtained in some studies about quantification of biological nitrogen fixation (BNF). A survey of the diazotrophic bacteria present in sugar cane genotypes differingin their capacity to obtain nitrogen through BNF was performed, and population of Herbaspirillum spp. and Acetobacter diazotrophicus was quantified. The bacteria tested in the survey were Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. and Acetobacter diazotrophicus. All these bacteria were present in the four genotypes and were found in all parts of the plants, except A. amazonense which was not isolated from leaf samples. The quantification of Herbaspirillum spp. and A. diazotrophicus showed that there were no significant differences among the sugar cane genotypes and, generally, the bacteria were in greater number in roots. While number of Herbaspirillum spp. remained stable during the life-cycle of the culture, the population of A. diazotrophicus suffer a decrease with the approach of the end of the commercial cycle. It is suggested that the differences in the rates of BNF found in sugar cane genotypes are not caused by differences in the presence or the number of the bacterial species studied here.